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1 Introduction

In this essay, we will first develop the basic theory of Borel sets, then extend
this to analytic sets. We will see some interesting properties, which will give us
a deeper understanding of the sets in Polish Spaces.

The properties we introduce in this chapter can usually be established ef-
fectively without the Axiom of Choice. However, in descriptive set theory one
frequently considers unions and intersections of countably many sets of reals,
and we shall often use facts like ‘the union of countably many countable sets is
countable’. Thus we shall work throughout this chapter, under ZF+ Countable
Axiom of Choice.

2 Definitions

Seq is the set of all finite sequences of natural numbers.

When talking about members of Seq, we will sometimes make use of the s ⌢ k
notation to mean appending k to s, where s is a member of Seq. So for example,
if s = 01, s ⌢ 1 = 011.

For s = ⟨ak : k < n⟩ ∈ Seq and f = ⟨ck : k ∈ N⟩ ∈ N , we say s ⊂ f if:
(∀k < n) ck = ak.

Similarly, For s = ⟨ak : k < n⟩ ∈ Seq and f = ⟨ck : k < m⟩ ∈ Seq, m > n, we
say s ⊂ f if: (∀k < n) ck = ak

Baire Space is N = ωω, i.e. all infinite sequence of natural numbers, with the
following topology: For every finite sequence s = ⟨ak : k < n⟩, let

O(s) = {f ∈ N : s ⊂ f} = {⟨ck : k ∈ N⟩ : (∀k < n) ck = ak}

O(s) has an interesting property:

Claim. O(s) is both open and closed.

Proof. We just need to show that O(s)c is open.
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O(s)c =
⋃
b ̸=a

{⟨ck : k ∈ N⟩ : (∀k < n)ck = bk} =
⋃
b ̸=a

O(b)

Where b = ⟨bk : k ∈ N⟩. Thus O(s)c is open, so O(s) is closed.

Remark. While Seq is countable, N is not, which we can prove via a diagonal
argument. Indeed, |N | = 2ℵ0 .

An algebra of sets is a collection S of subsets of a given set S, such that:

(i) S ∈ S

(ii) If X ∈ S and Y ∈ S then X ∪ Y ∈ S

(iii) If X ∈ S, then S −X ∈ S

A σ−algebra is an algebra, which is closed under countable unions (and as a
result intersections).

Once we have the notion of an algebra (σ−algebra), we can also talk about
an algebra (σ−algebra) which includes a collection X of subsets of S. We
can then talk about the smallest algebra (σ−algebra) S such that S ⊃ X ,
namely the intersection of all algebra (σ−algebra) S such that X ⊂ S. It is
easily checked that the countable intersection of algebras (σ−algebras) is still
an algebra (σ−algebra).

3 Polish Space

A Polish Space is a topological space that is homeomorphic to a separable
complete metric space. It has a lot of desirable properties: it is Hausdorff, for
example.

Lemma 1. Baire space is complete, separable and metrizable, thus a Polish
space.

Proof. For f, g ∈ N , we let f(n) and g(n) be the nth element of f, g respec-
tively. Consider the metric d(f, g) = 1/2n+1, where n is the least number such
that f(n) ̸= g(n) . The countable set of all eventually constant sequences is
dense in N . This separable metric space is complete, as every Cauchy sequence
converges.

Example 1 (Examples of Polish Space). R, N , The unit interval [0, 1], the unit
circle T , Hilbert cube [0, 1]ω, etc

Now, the following lemma gives an important property of Polish space:
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Lemma 2. Let X be a Polish space, then there exist a continuous mapping
from N onto X.

Proof. Let X be a complete separable metric space; we construct a mapping f
of N onto X as follows: By induction on the length of s ∈ Seq we construct a
collection {Cs : s ∈ Seq } of closed balls such that C∅ = X, and:

(i) diam(Cs) ≤ 1/n where n = length(s)

(ii) Cs ⊂
⋃∞

k=0 Cs⌢k

(iii) If s ⊂ t, then center(Ct) ∈Cs

In this construction, we are taking X, then successively splitting it into
smaller pieces of closed sets. This construction is possible due to the fact that
X is separable.

Now we start constructing the continuous map:
For each a = ⟨ak : k ∈ N⟩ ∈ N , and for each n ∈ N, let sn = ⟨ak : k ≤ n⟩:

i.e. the first n digits of a. Then, for each n, choose a point pn in Csn . pn form
a Cauchy sequence, and so converge to a point p. p ∈

⋂
{Cs : s ⊂ a}; Also, it is

easily checked by contradiction that p is the only point in the intersection. We
let f(a) = p.

Now we check that f is continuous. Becausse N and X are both Polish
spaces and metrizable, It suffices to prove sequential continuity. Take an → a,
where an, a ∈ N . Then we have that for all m ∈ N, the first m digits of an are
eventually the same. Thus we see that from the construction of f , f(an) → f(a),
thus f is continuous.

4 Borel Sets

4.1 Definition of Borel Hierarchy

Definition 1. Letbe a Polish space. A set A ⊂ X is a Borel set if it belongs
to the smallest σ−algebra of subsets ofcontaining all closed sets.

Note that if Polish space X is countable, then every A ∈ X is Borel, because
every set is a countable union of point sets. However, if X is uncountable, then
this is not the case (for example, [0,1] and the Vitali set, which we will introduce
later).

Given X , a set of subsets of S, let us recall the definition of the smallest
σ−algebra containing X , which we will name S. To get all the sets of S, we will
have to take intersections and unions of sets in X , then take intersections and
unions of all new sets, then repeat this process.

This gives us an idea of how we can go about constructing Borel sets explic-
itly and inductively: we create a hierarchy of sets, and at each step, take the
intersection and unions of all existing sets.
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Definition 2. For each α < ω1, let us define the collection Σ0
α and Π0

α of subsets
of X:

Σ0
1 = the collection of all open sets 1;

Π0
1 = the collection of all closed sets;

Σ0
α = the collection of all sets A =

⋃∞
n=0 An, where each An belongs to Π0

β

for some β < α.

Π0
α = the collection of all sets A =

⋂∞
n=0 An, where each An belongs to Σ0

β

for some β < α.

Remark.

1. This definition follows the ways in which a Borel set can be constructed
from simpler sets; we are indexing over all countable ordinals, not just the
finite ones, because Borel setes are closed under countable intersection and
union.

2. Σ0
2: The countable union of closed sets, are called the Fσ sets.

Π0
2: The countable intersection of open sets, are called the Gσ sets. [2]

They are of particular interest when it comes to Baire Category Theory.

3. In our definitions, An need not be distinct, and can be ∅.

4. There is an equivalent definition of Π0
α: Π0

α = the collection of all com-
plements of sets in Σ0

α.

5. It is clear by induction on α that the elements of each Σ0
α and Π0

α are
Borel sets.

6. Each Σ0
α and Π0

α are closed under finite unions, finite intersections, and
inverse image by continuous functions (i.e. if A ∈ Σ0

α in Y , then f−1(A) ∈
Σ0

α in X whenever f : X → Y is a continuous function).

Example 2. Here are some Borel sets, and the hierarchy it belongs to.
The Cantor Set: It is a Borel set, a countable intersection of closed sets,

thus it is in Σ0
1.

Q: Take any q ∈ Q, then create an interval around it. Shrink the interval
until we only have that point left. Thus Q =

⋃
q∈Q

⋂∞
n=1[q−1/n, q+1/n]. Thus

it is in Σ0
2.

R−Q is the complement of Q so it’s in Π0
2.

1Note that the notations are in bold. There is another hierarchy, called ‘effective Borel
hierarchy’ or ‘lightface Borel hierarchy’ which is different. In this essay, we will be talking
about the bold faced version only.
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4.2 Properties

Once we have a definition, we can ask ourselves whether it is a good definition.
We would like this hierarchy to be a tool to describe the Borel sets, so does the
union of all the hierarchy form a σ−algebra? And when taking unions, surely
we don’t need to take unions over both Σ and Π sets. But is the union over
one of them the same as the other?

Lemma 3. for countable ordinals α < β, we have:

Σ0
α ⊂ Σ0

β , Σ
0
α ⊂ Π0

β , Π
0
α ⊂ Π0

β , Π
0
α ⊂ Σ0

β

Proof. We only need to prove the first two of these, the rest follows as for
collection of sets A and B, we have A ⊂ B ⇒ Ac ⊂ Bc 2.

But note: if α, β are countable ordinals bigger than 1, then the first two
inclusions is obvious by definition. The only special case we have to deal with
is when α = 1.

This case is easily dealt with: Since every open set is the union of countably
many closed sets, we have that Σ0

1 ⊂ Σ0
2. Similarly, every open set is the

intersection of countably many open sets, we have that Σ0
1 ⊂ Π0

2.

Corollary 1. ⋃
α<ω1

Σ0
α =

⋃
α<ω1

Π0
α

Proof.
⋃

α<ω1
Σ0

α ⊂
⋃

α<ω1
Π0

α, and also
⋃

α<ω1
Π0

α ⊂
⋃

α<ω1
Σ0

α

Remark. This is a lemma that tells us our definition makes sense, when we take
unions.

Lemma 4.
⋃

α<ω1
Σ0

α is a σ−algebra.

Proof. The axioms are easily checked. Though of course, when checking closure
under countable unions, we are taking a countable list of sets Ai from Σαi

,
where αi < ω1.

When taking the countable union of Ai, we try to check that
⋃∞

i=0 Σαi
=

Σsup{αi} is still in
⋃

α<ω1
Σ0

α, which is equivalent to checking if sup{αi} is still
countable, which is equivalent to checking if a countable union of countable sets
is countable, which is equivalent to Countable Axiom of Choice.

We’re fine then, as we are working with ZF and Countable AC.

Once we have this lemma, we have that every Borel set is in Σ0
α for some

α < ω1.
Another question about the hierarchy that naturally arises is do we need so

many hierarchies? Are there any two hierarchies that are the same? Why does
the hierarchy not stop at some countable ordinal, i.e. is it possible to exhaust
all the Borel sets with a countable hierarchy?

2Note how this is different from the following assertion: when A, B are sets, then A ⊂
B ⇒ Ac ⊃ Bc
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We show below that for each α < ω1, we have: Σ0
α ̸⊂ Π0

α, and hence
Σ0

α ̸= Σ0
α+1 for all α < ω1, which shows we cannot exhaust all the Borel sets

with a countable hierarchy.
First of all, Lemma 2 tells us that there is a continuous mapping from N

onto X. If we can prove Σ0
α ̸⊂ Π0

α for N , then as Σ0
α, Π0

α are stable under
inverse images of continuous functions, we have proven it for X.

We can prove this by exhibiting a set A ⊂ N that is in Σ0
α but not in Π0

α,
aka A ∈ Σ0

α, but A
c ̸∈ Σ0

α.
We start with the following lemma which will give us a property of Σ0

α to
help us construct the set we want.

Lemma 5. For each 1 ≤ α < ω1, there exists a set U ⊂ N 2 such that U is Σ0
α

(in N 2), and that for every Σ0
α set A ∈ N , there exists some a ∈ N such that

A = {x : (x, a) ∈ U} (1)

We call such a set U a ‘universal Σ0
α’ set. Further, each a ∈ N , {x : (x, a) ∈

U} is a Σ0
α set.

Proof. To construct a universal open set in N 2, a good idea is to start with the
basis, build U such that Property 1 holds, and see if it holds for any Σ0

α set A.
Remember the basis O(s) of N , and note that there’s a countable number of
them. Let us enumerate them as G1, ...Gk, ... and let G0 = ∅.

Now, let

(x, y) ∈ U ⇐⇒ x ∈ Gy(n) for some n.

It is easily seen that U =
⋃∞

n=0 Hn where each Hn = {(x, y) : x ∈ Gy(n)}.
Claim. Hn are open sets.

Proof. Fix (x, y) ∈ Hn, and suppose ϵ, δ are such that B(x, ϵ) ⊂ Gyn
, and

δ < 1/n, then ∀z ∈ B(y, δ), we have z(n) = y(n), so B(x, ϵ)×B(y, δ) is an open
neighbourhood around (x, y).

Thus U is open, and Property 1 is satisfied for the basic sets Gi.
Now we shall prove this for every open set: suppose G is an open set in N ,

then we let a ∈ N be such that G =
⋃∞

n=0 Ga(n); then G = {x : (x, a) ∈ U}.
Further, we note that given any a ∈ N , {x : (x, a) ∈ U} =

⋃∞
n=0 Ga(n) is an

open set.
This prompts us to try induction on α. Our inductive hypothesis is we have

a Σ0
α set U such that:

1. For every Σ0
α set A, there exists some a ∈ N such that A = {x : (x, a) ∈

U};

2. Given a ∈ N , {x : (x, a) ∈ U} is a Σ0
α set;
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Suppose we have U , a universal Σ0
α set, and now let us construct a universal

Σ0
α+1 set V .
First, let us consider a continuous mapping f of N onto the product space

Nω. The proof of the existence of such a function can be found in the Appendix.
Once we have the continuous mapping f : N → Nω, we let

(x, y) ∈ V ⇐⇒ for some n, (x, y(n)) ̸∈ U .

We have V =
⋃∞

n=0 Hn, where each Hn = {(x, y) : (x, y(n)) ̸∈ U}.
Claim. Hn is a Π0

α set, thus V is Σ0
α+1.

Proof. Let us define a map g : N 2 → N 2, given by: g((x, y)) = (x, y(n)). H
c
n is

the preimage of U under g.
Now, y 7→ y(n) is the composition of continuous map f and the projection

map, therefore it is continuous. So g is continuous, U is Σ0
α, therefore Hc

n is
also Σ0

α. The claim follows.

Now we just have to show V is universal. If A is a Σ0
α+1 set in N , then

A =
⋃∞

n=0 An where each An is Π0
α, and consequently Ac

n is Σ0
α. Thus for each

n we can find an be such that N −An = {x : (x, an) ∈ U}.
Let a be such that a(n) = an for all n, then a = ⟨an⟩∞n=1 satisfies A = {x :

(x, a) ∈ V }. Conversely, given {x : (x, a) ∈ V } =
⋃∞

n=0 An where An = {x :
(x, a(n)) ̸∈ U}. But An is Π0

α, by a similar argument to the previous claim, so
A is Σ0

α+1.
We have dealt with the successor case, now let us deal with the limit case.

Let α be a limit ordinal, and let Uβ (1 ≤ β ≤ α) be universal Σ0
α sets. Let

1 ≤ α0 ≤ α1 < ... < αn < ... be an increasing sequence of ordinals such that
limn→∞ αn = α. Let

(x, y) ∈ U ⇐⇒ for some n, (x, y(n)) ̸∈ Uαn

The set U is Σ0
α, again by an argument similar to the previous Claim.

If A is a Σ0
α set in N , then we can write A =

⋃∞
n=0 An where each An is

Π0
αn

3. For each n, let an be such that N −An = {x : (x, an) ∈ Uαn} 4, and let
a be such that a(n) = an for all n. Such an a exists, because the map f which
we have defined before is onto. Then A = {x : (x, a) ∈ V }. Conversely, it is
easily checked that {x : (x, a) ∈ V } is Σα+1.

Remark.

1. This shows that all of the Borel sets can be indexed by N . This also means
that the set of Borel sets have cardinality less than or equal to |ωω| = 2ℵ0 .

3This can be done as follows: write A =
⋃∞

n=0 Bnwhere Bn ∈ Π0
βn

. Then, we create An

by going down the list of Bn and adding empty sets. For example, if αm (m > 0) is the
smallest ordinal such that B1 ∈ Π0

αm
, then let A0, ...Am−1 = ∅, and Am = B1.

4Beware the difference between a and α.
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2. In R, we can say more about the cardinality: intervals [−∞, r] in R are
all Borel, and the set of such intervals cardinality |R| = 2ℵ0 . This means
the set of Borel sets have cardinality 2ℵ0 .

3. This gives a proof for the existence of non-Borel sets in R. The cardinality
of R is 22

ℵ0
which is strictly bigger than 2ℵ0 , thus there exist sets which

are non-Borel.

Corollary 2. For every α ≥ 1, there is a set A ⊂ N that is Σ0
α but not Π0

α

Proof. Let U ⊂ N 2 be a universal Σ0
α set. Let us consider the set

A = {x : (x, x) ∈ U}. (2)

A is a Σ0
α set because it is the preimage of U of the continuous map x 7→

(x, x). If A were also Π0
α, then its complement would be Σ0

α, and by the
definition of a universal set, there is some a such that

A = {x : (x, a) ∈ U}c = {x : (x, a) ̸∈ U}. (3)

Now, consider a. If (a, a) ∈ U , then a ∈ A by expression (2), but then
(a, a) ̸∈ U by expression (3). Contradiction.

Thus (a, a) ̸∈ U . But then by (3) a ∈ A, and by (2) (a, a) ∈ U . Contradic-
tion.

5 Analytic Set

While Borel sets of reals is closed under Boolean operations, countable unions
and preimages of continuous functions, it is NOT closed under continuous im-
ages.

In this section, we shall investigate the continuous images of Borel sets.

Definition 3. A subset of a Polish space X is analytic if there exists a contin-
uous function f : N → X such that A = f(N ).

Remark. Because of Lemma 2, we see that A ⊂ X is analytic if it is the contin-
uous image of a Polish space. It is a generalisation of a the Borel set, and we
will prove in the next lemma that they are precisely the continuous images of
Borel sets, the objects we want to study.

Definition 4. The projection of a set S ⊂ X × Y (into X) is the set P = {x ∈
X : ∃y (x, y) ∈ S}.

The following lemma gives equivalent definitions of analytic sets:

Lemma 6. Let A be a set in a Polish space X. The following are equivalent:

(i) A is the continuous image of N ;

(ii) A is the continuous image of a Borel set B (in some Polish space Y);
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(iii) A is the projection of a closed set in X ×N .

Proof. Let us prove two claims first, which will help us with the lemma.

Claim. Every closed set in any Polish space is analytic.

Proof. Note that every closed set of a Polish space is itself a Polish space with
respect to the subset topology, and thus a continuous image of N by Lemma
2.

Claim. Every Borel set is the projection of a closed set in X ×N .

Proof. To prove claim for every Borel set, it is enough to show that the family
P of all subsets of X that are such projections contain all closed sets, all open
sets, and is closed under countable unions and intersections.

Because projection map is open, P contains all closed sets. Moreover, every
open set is a countable union of closed set, so it suffices to show that P is
closed under

⋃∞
n=0 and

⋂∞
n=0. We will prove this using the continuous mapping

a 7→ ⟨a(n) : n ∈ N⟩ of N onto Nω from Lemma 5.⋃∞
n=0 An

For each n, let Fn ⊂ X×N be a closed set such that An are the projections
of Fn:

An = {x : ∃a (x, a) ∈ Fa}.

We want to show that
⋃∞

n=0 An is a projection of a closed set in X ×N . To get
at such a set, we look at an element x ∈

⋃∞
n=0 An:

x ∈
∞⋃

n=0

An ⇐⇒ ∃n ∃a (x, a) ∈ Fn

⇐⇒ ∃a ∃b (x, a) ∈ Fb(0)

⇐⇒ ∃c (x, c(0)) ∈ Fc(1)(0)

Recall the use of continuous mapping f : N → Nω given in Lemma 5 to
define c(n). The existence of c comes from the surjectivity of f .

Hence,
⋃∞

n=0 An is the projection of the set

{(x, c) : (x, c(0)) ∈ Fc(1)(0)}

This set is closed due to the continuity of f .⋂∞
n=0 An

Similar to the previous case, we have:
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x ∈
∞⋂

n=0

An ⇐⇒ ∀n ∃a (x, a) ∈ Fn

⇐⇒ ∃c ∀n (x, c(n)) ∈ Fn

⇐⇒ ∃c (x, c) ∈
∞⋂

n=0

{(x, c) : (x, c(n)) ∈ Fn}.

And
⋂∞

n=0 An is the projection of an intersection of closed sets.

Once we have these two results the lemma becomes easy, because we have
the following corollaries:

(i) ⇐⇒ (iii) Every closed set in X × N is analytic and projection is
continuous; Conversely, if A ⊂ X is an analytic set, A = f(N ), then A is the
projection of the set {(f(x), x) : x ∈ N} which is a closed set in X ×N .

(i) ⇐⇒ (ii) Every Borel set is a projection of a closed set in X ×N . Thus
every Borel set is analytic. Conversely, every analytic set is the projection of a
closed set in X ×N , which is the continuous image of a Borel set.

Now we have an idea of what analytic sets look like, in particular all the
Borel sets are analytic.

Later on in this essay, we will prove that the Analytic sets are Lebesgue
measurable, and this gives us some examples of sets that are not analytic (e.g.
Vitali sets, which we will define later); We will also prove that there exist a set
in N which is analytic, but not Borel.

6 Suslin Operator A
In this section, we use Suslin operator to describe the analytic sets more con-
cretely.

In 1917, Suslin discovered an error in a proof of Lebesgue’s article, and it
led to a construction of an analytic non-Borel set and the introduction of the
operation A.

Before we start, recall that for each a ∈ ωω, a|n is the finite sequence ⟨ak :
k < n⟩. Recall that for each s ∈ Seq, O(s) is the basic open set {a ∈ N : a|n =
s} of the Baire space. O(s) is both open and closed. For every set A in a Polish
space, A denote the closure of A.

Now define Suslin Operator A, which constructs a set from a collection of
sets indexed by elements of Seq. Let {As : s ∈ Seq } be such a collection. We
define

A{As : s ∈ Seq } =
⋃

a∈ωω

∞⋂
n=0

Aa|n
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Remark.

1. If {Bs : s ∈ Seq} is arbitrary, then

⋃
a∈ωω

∞⋂
n=0

Ba|n =
⋃

a∈ωω

∞⋂
n=0

(Ba|0 ∩Ba|1 ∩ ... ∩Ba|n)

Hence A{Bs : s ∈ Seq} = A{As : s ∈ Seq} where the sets As are finite
intersections of the sets Bs and satisfy the following condition:

If s ⊂ t then As ⊃ At.

Thus we shall restrict our use of A to families that satisfy the above
condition.

2. It is easy to see that
⋃∞

n=0,
⋂∞

n=0 are special cases of the Suslin operator.

Lemma 7. A set A in a Polish space is analytic iff A is the result of operation
A applied to a family of closed sets.

Proof. First, we show that if Fs, s ∈ Seq, are closed sets in Polish space X, then
A = A{Fs : s ∈ Seq} is analytic. We have

x ∈ A ⇐⇒ ∃a ∈ N x ∈
∞⋂

n=0

Fa|n

⇐⇒ ∃a (x, a) ∈
∞⋂

n=0

Bn

Where Bn = {(x, a) : x ∈ Fa|n}. Now, Bn =
⋃

s∈Seq Fs ×O(s), so each Bn is a
Borel set in X ×N and hence A is analytic.

Conversely, let A ⊂ X be analytic. There is a continuous function f : N →
X such that A = f(N ). Notice that for every a ∈ N ,

∞⋂
n=0

f(O(a|n)) = {f(a)}.

This can be seen easily by contradiction. Now we are almost done, as we
can write A =

⋃
a∈ωω f(a) = A{f(O(s))}. The only problem is that we wish

that the A is the result of A applied to a family of closed sets. So let’s try to
take f(O(s)).

Claim.
∞⋂

n=0

f(O(a|n)) = {f(a)}
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Proof. f(a) ∈
⋂∞

n=0 f(O(a|n)) is easy to see.
Now, because

⋂∞
n=0 f(O(a|n)) = {f(a)}, and the fact that Polish space is

homeomorphic to a metric space, we equip it with a metric, and we get ∀ϵ > 0,
∃n such that f(O(a|n)) ⊂ B(f(a), ϵ). Then f(O(a|n)) ⊂ B(f(a), ϵ). Thus⋂∞

n=0 f(O(a|n)) = {f(a)}.

Thus:

A = f(N ) =
⋃

a∈ωω

∞⋂
n=0

f(O(a|n)),

and A is the result of the operation A applied to the closed sets f(O(s))5.

Remark. In the process of proving Lemma 7, we have gained an explicit form
of writing each analytic set. Suppose A = f(N ), the intuition is we can ‘fill up’
N with O(s), so A = A{f(O(s))}.

7 Hierarchy of Projective Sets

It follows from the preceding section that the collection of all analytic sets
in Polish space is closed under countable unions and intersections, continuous
images, inverse images, and Suslin operations.

If X is an uncountable Polish space, it is NOT the case that the complement
of the Analytic set is analytic. in fact, if the complement is analytic, the analytic
set is Borel. In this section we will establish exactly that.

7.1 Definition

To start, let us generalise the Borel Hierarchy by defining the following:

Definition 5.

Σ1
1 = the collection of all analytic sets,

Π1
1 = the complements of analytic sets,

Σ1
n+1 = the collection of the projections of all Π1

n sets in X ×N ,

Π1
n = the complements of the Σ1

n sets in X,

∆1
n = Σ1

n ∩Π1
n.

The set belonging to one of Σ1
n or Π0

n are called projective sets. It is easily
seen that for every n, ∆1

n ⊂ Σ1
n ⊂ ∆1

n+1 and ∆1
n ⊂ Π0

n ⊂ ∆1
n+1.

5Note that this sets also satisfy the condition that if s ⊂ t, f(O(s)) ⊃ f(O(t))
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7.2 Properties

Similar to what we did for the Borel Hierarchy, we shall show that for every n,
there is a Σ1

n set in N that is not Π0
n, thus the above conclusions are proper

inclusions.
The following two results has lots of parallel with Lemma 5 and Corollary 2.

Lemma 8. For each n ≥ 1, there exists a universal Σ1
n set in N 2; i.e. a set

U ⊂ N 2 such that U is Σ1
n and that for every Σ1

n set A in N , there exists some
v ∈ N such that

A = {x : (x, v) ∈ U}.

Proof. Let h be a homeomorphism of N × N onto N 6. If n = 1, let V be a
universal Σ0

1 set; if n > 1, let V be, by the induction hypothesis, a universal
Σ1

n−1 set. Let

(x, y) ∈ U ⇐⇒ (∃a ∈ N ) (h(x, a), y) ̸∈ V. (4)

The set S = {(x, y, a) : (h(x, a), y) ̸∈ V } is the preimage of V c under the
continuous map (x, y, a) 7→ (h(x, a), y), so it is closed (if n = 1) or Π1

n−1 (If
n > 1). Thus U , being the projection of a closed or Π1

n−1 space, is Σ1
n.

Now we check that U is universal Σ1
n.

If A ⊂ N is Σ1
n, then by definition there is a closed (or Π1

n−1) set B such
that

x ∈ A ⇐⇒ ∃a ∈ N (x, a) ∈ B.

Since h is a homeomorphism, the set C = N − h(B) is open (or Σ1
n−1) in

N . Since V is universal, there exists a v such that C = {u : (u, v) ∈ V }. Then
by Property 4, we have

x ∈ A ⇐⇒ (∃a ∈ N )(x, a) ∈ B ⇐⇒ (∃a ∈ N )h(x, a) ̸∈ C

⇐⇒ (∃a ∈ N )(h(x, a), v) ̸∈ V ⇐⇒ (x, v) ∈ U.

Hence U is a universal Σ1
n set.

Corollary 3. For each n ≥ 1, there is a set A ⊂ N that is Σ1
n but not Π0

n.

Proof. Let U ⊂ N 2 be a universal Σ1
n set, and let

A = {x : (x, x) ∈ U}.

A is Σ1
n, because it is the preimage under the continuous map x 7→ (x, x) of

the Σ1
n set U .

Now, suppose A is Π0
n, then its complement is Σ0

n, and there exists an a
such that

A = {x : (x, a) ̸∈ U}.
which leads to a contradiction, in the same way as in Corollary 2.

6For explicit construction of the homeomorphism, see Appendix.

13



Corollary 4. There exists a set in N which is analytic, but not Borel.

Proof. Let U ⊂ N 2 be a universal analytic set (i.e. a universal Σ1
1 set), and let

A = {x ∈ N : (x, x) ∈ U}

A is analytic, by the same argument as before. If A is Borel, then so is Ac,
thus Ac is analytic, and there exists a ∈ N such that

A = {x : (x, a) ̸∈ U}

We reach a contradiction, in the same way as in Corollary 2.

7.3 Σ1
1−Separation

The collection of all ∆1
1 sets in a Polish space is a σ−algebra, and contains all

Borel sets. It turns out, ∆1
1 is exactly the collection of all Borel sets.

Theorem 1 (Suslin). Every analytic set whose complement is also analytic is
a Borel set. Thus ∆1

1 is the collection of all Borel sets.

In order to prove this theorem, we will prove the Σ1
1−Separation theorem,

from which the theorem follows easily.
Letbe a Polish space, and let A and B be two disjoint analytic sets in X.

We say that A and B are separated by a Borel set if there exists a Borel set D
such that A ⊂ D and B ⊂ X −D.

Lemma 9. Any two disjoint analytic sets are separated by a Borel set.

Remark. This lemma is often called the Σ1
1−Separation Principle. It implies

Suslin’s theorem since if A is an analytic set such that B = X − A is also
analytic, A and B are also separated by a Borel set D and we clearly have
D = A.

Proof. First we make the following observation: If A =
⋃∞

n=0 An and B =
⋃∞

n=0

are such that for all n,m, An and Bm are separated, then A and B are separated.
This is proved as follows: For each n and each m, let Dn,m be a Borel set such
that An ⊂ Dn,m ⊂ X − Bm. Then A and B are separated by the Borel set
D =

⋃∞
n=0

⋂∞
m=0 Dn,m.

Let A, B be two disjoint analytic sets in X. Let f, g be continuous functions
such that A = f(N ) and B = g(N ). For each s ∈ Seq, let As = f(O(s)) and
Bs = g(O(s)); the sets As and Bs are all analytic sets. For each s, we have
As =

⋃∞
n=0 As⌢n and Bs =

⋃∞
m=0 Bs⌢m. If a ∈ ωω, then

{f(a)} =

∞⋂
n=0

f(O(a|n)) =
∞⋂

n=0

Aa|n ,

and similarly for the sets Bs.
Let a, b ∈ ωω be arbitrary. Since f(N ) and g(N ) are disjoint, we have

f(a) ̸= g(b). Let Ga and Gb be two disjoint open neighbourhoods of f(a) and

14



g(b), respectively (which is possible to find, as Polish spaces are Hausdorff).
By the continuity of f and g there exists some n such that Aa|n ⊂ Gn and
Bb|n ⊂ Gb. It follows that fixing a, b, there exists n such that the sets Aa|n and
Bb|n are separated by a Borel set.

We shall now show, by contradiction, that the sets A and B are separated
by a Borel set. If A and B are not separated, then because A =

⋃∞
n=0 A⟨n⟩

and B =
⋃∞

m=0 B⟨n⟩, there exists n0 and m0 such that A⟨n0⟩ and B⟨m0⟩ are not
separated.

The similarly there exists n1 andm1 such that the sets A⟨n0,n1⟩ and B⟨m0,m1⟩
are not separated, and so on. In other words, there exists a = ⟨n0, n1, ...⟩
and b = ⟨m0,m1, ...⟩ such that for every k, A⟨n0,...nk⟩ and B⟨m0,...mk⟩ are not
separated. This is a contradiction, since in the preceding paragraph we proved
exactly the opposite: There is a k such that Aa|k and Bb|k are separated.

8 Properties

We will next look into additional properties of analytic sets including measura-
bility and the Baire Property. In this section, we will go over these concepts.

8.1 Lebesgue Measure

The Lebesgue measure is a way of measuring the size of a set, the intuitive way
of thinking is that Lebesgue measure of a cube is just its volume. Let us use
v(I) to define the volume of I. Of course, when we start to generalise v, we
would ran into some problems, for example, how would we define the volume of
a Cantor set?

The standard way of defining Lebesgue measure is to define first the outer
measure µ∗(X) of a set X ⊂ Rn as the infimum of all possible sums Σ{v(Ik) :
k ∈ N} where {Ik : k ∈ N} is a collection of n−dimensional intervals such that
X ⊂

⋃∞
k=0 Ik. We have µ∗ ≥ 0 and X is null if µ∗(X) = 0.

A set A ⊂ Rn is Lebesgue measurable if for each X ⊂ Rn,

µ∗(X) = µ∗(X ∩A) + µ∗(X −A).

For a measurable set A, we write µ(A) instead of µ∗(A), and call µ(A) the
Lebesgue measure of A.

Lebesgue measure have the following properties, whose proofs we will omit:

(i) Every cuboid is Lebesgue measurable, and its measure is its volume.

(ii) The Lebesgue measure sets form a σ−algebra, hence every Borel set is
measurable.

(iii) µ is σ−additive: If {An} are countable pairwise disjoint and measurable
sets, then

µ(

∞⋃
n=0

An) = Σ∞
n=0µ(An).
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(iv) µ is σ−finite: If A is measurable, then there exist measurable sets An,
n < ω such that A =

⋃∞
n=0 An and µ(An) < ∞ for each n.

Now let us see the following lemma that will be very important later in the
proof of Theorem 3:

Lemma 10. For any set X ⊂ Rn there exists a measurable set A ⊃ X with the
property that whenever Z ⊂ A−X is measurable, then Z is null.

Proof. Note that we are not assuming that X is measurable, so let us look at
its outer measure µ∗(X), defined by µ∗(X) = inf{µ(A) : A is measurable and
A ⊃ X}.

If µ∗(X) < ∞, then there is a measurable A ⊃ X such that µ(A) = µ∗(X);
this A meets the requirement.

If µ∗(X) = ∞, there exists pairwise disjoint Xn such that X =
⋃∞

n=0 Xn

and that for each n, µ∗(Xn) < ∞. This can be done for example simply by
dividing Rn into countable number of cubes, number them, and let Xn be the
intersection of X and the nth cube.

Now we have reduced this to the previous case. Let An ⊃ Xn, n < ω, be
measurable sets such that µ(An) = µ∗(Xn) and let A =

⋃∞
n=0 An.

8.1.1 Examples

Not every set is measurable. A typical counter-example is the Vitali set. It is
not measurable implies it is not Borel either.

Definition 6 (Vitali Set). Take [0, 1], and define an equivalence relationship
by the following: for x, y ∈ [0, 1], x ∼ y iff (x− y) ∈ Q.

For each equivalence class, take a class representative, and let S be the set
of such representatives.

Claim. The Vitali set is not measurable.

Proof. We will show that this set is not measurable.
First of all, note that for any u ∈ [0, 1],∃!v ∈ S such that v ∼ u, aka

(v − u) ∈ Q. Furthermore, for any v ∈ S, q ∈ Q, u + q ̸∈ S. Thus we see that
for each q ∈ Q, set S + q is disjoint to S, also [0, 1] =

⋃
q∈Q(S + q).

Now, suppose that S is measurable, with measure m, then this says [0, 1] =
Σq∈Q|S|, which is either 0 or ∞. Contradiction.

8.2 The Property of Baire

Let us consider a Polish space X. Let us call a set A ⊂ X nowhere dense if the
complement of A contains a dense open set. This means for any open set G,
A ∩G is not dense in G. Not explicitly, there is H ⊂ G such that A ∩H = ∅.

A set A ⊂ X is meagre (or of first category) if A is a union of countable
many nowhere dense sets. A nonmeagre set is called a set of second category.

Lemma 11. The subset of a meager set is meager.
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Proof. Suppose A is meager, and B ⊂ A. Then A =
⋃∞

n=0 Ui, where Ui are
nowhere dense. Then B =

⋃∞
n=0 Ui ∩B, and Ui ∩B is also nowhere dense, thus

B is meager.

A fundamental result in analysis is the Baire Category Theorem, which we
will state here and not prove.

Theorem 2 (Baire Category Theorem). In Polish space, every nonempty open
set is of nonmeagre.

Definition 7 (Baire Set). Given a Polish space X, a set A ⊂ X is a Baire Set
if there exists an open set G such that G△A is meager.

Remark. The notion of a Baire topological space is completely different from
that of Baire set.

Lemma 12. The sets having the Baire property form a σ−algebra, hence every
Borel set has the Baire property.

Proof. All the open sets are Baire, in particular X is Baire.
It is also easy to see that the union of countably many sets with Baire

property has the Baire property.
Now let’s check complements. Note that if G is open, then G−G is nowhere

dense. Hence if A△G is meager then (X − A)△(X − G) = A△G is meager,
and X − G is open, so it follows that the complement of a set with the Baire
property also has the Baire property.

Thus the Baire sets are a σ−algebra, and contains all the open sets, as a
result it contains all the Borel sets.

Lemma 13. For any set S is a Polish space X, there exists a set A ⊃ S that has
the Baire property, and such that whenever Z ⊂ A− S has the Baire property,
then Z is meagre.

Remark. Compare this lemma to Lemma 10.

Proof. Let us consider a fixed countable topology basis O for X. Let S ⊂ X.
Let

D(S) = {x ∈ X : for every U ∈ O such that x ∈ U, U ∩ S is not meager }.

Note that the complement of D(S) is the union of U ∈ O such that U ∩S is
meager. Thus D(S)c is open. So D(S) is closed.

the union of open sets and hence open; thus D(S) is closed.
The set S−D(S) is the union of all S∩U where U ∈ O and S∩U is meagre;

since O is countable, X−D(S) is a countable union of meager sets, so S−D(S)
is meager. Let

A = S ∪D(S).

Since A = (S −D(S)) ∪D(S) is the union of a meager and a closed set, A
has the Baire property. This is because the Baire sets form a σ−algebra which
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includes Borel sets and the meager sets, so A, the union of a Borel and meager
set, is a Baire set.

Let Z ⊂ A− S have the Baire property: we shall show that Z is meager.
Because Z is Baire, we see that there is an open set G such that G△Z is

meager. The subset of a meager set is meager, and as a result G−Z is meager.
Because O is the basis of the Polish space X, G is the union of open sets in this
basis, and we can find U ∈ O such that U − Z is meager.

Suppose, for contradiction, that Z is non-meager. Then U ∩ Z ̸= ∅. If not
then U△Z = U ∪ Z is non-meager.

Because Z ⊂ A− S, we have that U ∩ S ⊂ U − Z, so U ∩ S is meager.
Also, Z ⊂ D(S), so there exist x ∈ U such that x ∈ D(S), this U ∩ S is

non-meager, a contradiction.
Otherwise there is U ∈ O such that U −Z is meagre; hence U ∩S is meager.
Since U ∩Z ̸= ∅ and Z ⊂ D(S), there is x ∈ U ∩Z such that x ∈ D(S), and

hence U ∩ S is not meager by the definition of D(S), a contradiction.

8.2.1 Examples

Not every set is a Baire set, one example is the familiar Vitali set.

Claim. The Vitali set does not have the Baire property.

Proof. First of all, note that ‘meagre’ and ‘Baire’ property are invariant under
translation.

Let S be the Vitali set. If S has the Baire property, then there is an open set
G such that G△S is meager. We can find an interval (a, b) ⊂ G, and because
the subset of a meager set is still meager, and (a, b)− S ⊂ G△S, we have that
(a, b)− S is meager.

Now, we know that for all q ∈ Q, S+q∩S = ∅. (a, b)∩ (S+q) ⊂ (a− b)−S,
thus (a, b) ∩ (S + q) is meager for all rational q ̸= 0. Thus S ∩ (a − q, b − q) is
meager for all rational q ̸= 0.

Because S =
⋃

q∈Q S ∩ (a − q, b − q), we get S is also meager. However,
[0, 1] =

⋃
q∈Q S + q, thus [0, 1] is meager. This is not true, contradiction.

8.3 A note on ‘Smallness’

We have now seen several adjectives that means ‘small’, like ‘null’ and ‘meagre’.
But these adjectives describes sizes in complely different ways. For example,
the real line can be decomposed into a null set and a meager set.

Lemma 14. R can be decomposed into a null set and a meager set.

Proof. Let Q be a enumeration of the rationals. For each n ≥ 1 and k ≥ 1, let
In,k be the open interval with center qn and length 1/(k·2n). LetDk =

⋃∞
n=1 In,k

and A =
⋂∞

k=1 Dk.
Each Dk is open because it is the union of open sets, it is dense as it contains

Q, and µ(Dk) ≤ 1/k. Hence A is null, and R−A is meager.
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Another interesting example is the Cantor set C. |C| is the continuum, i.e.
the same cardinality as the reals. However, the Lebesgue measure of the Cantor
set is 0, and the set is meager.

9 Analytic Sets: Measure and Category

Theorem 3.

(i) Every analytic set of reals is Lebesgue measurable.

(ii) Every analytic set has the Baire property.

Proof. (i) Let A be an analytic set of reals (or a subset of Rn). Let f : N → R be
a continuous function such that A = f(N ). For each s ∈ Seq, let As = f(O(s)).
We have by lemma 7:

A = A{As : s ∈ Seq} = A{As : s ∈ Seq}, (5)

And for every s ∈ Seq,

As =

∞⋃
n=0

As⌢n.

By lemma 10, there exist for each s ∈ Seq a measurable set Bs ⊃ As such
that every measurable Z ⊂ Bs − As is null. Since As is measurable, we may
actually find Bs such that As ⊂ Bs ⊂ As.

Let B = B∅. Since B is measurable, to show that A is measurable, it suffices
to show that B −A is a null set.

Notice that because As ⊂ Bs ⊂ As, and because Property 5 holds, we have
that

A = A{Bs : s ∈ Seq}.

Thus

B −A = B −
⋃

a∈ωω

∞⋂
n=0

Ba|n .

We claim that

B −
⋃

a∈ωω

∞⋂
n=0

Ba|n ⊂
⋃

s∈Seq

(Bs −
⋃

Bs⌢k). (6)

To prove Property 6, we assume that x ∈ B is such that x is not a member
of the right hand side. Then for every s, if x ∈ Bs, then x ∈ Bs⌢k for some
k. Hence there is k0 such that x ∈ B(k0), a k1 such that x ∈ B⟨k0,k1⟩, etc. Let
a = ⟨k0, k1, ...⟩; we have x ∈

⋂∞
n=0 Ba|n and hence x is not a member of the left

hand side 7.

7We have seen this trick of consecutively selecting elements to build an index a before, in
the proof of Lemma 9.
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Thus we have

B −A ⊂
⋃

a∈Seq

(Bs −
∞⋃

n=0

Bs⌢k).

Since Seq is a countable set, it suffices to show that each Bs −
⋃∞

k=0 Bs⌢k is
null. Let s ∈ Seq, and let Z = Bs −

⋃∞
k=0 Bs⌢k. We have:

Z = Bs −
∞⋃
k=0

Bs⌢k ⊂ Bs −
∞⋃
k=0

As⌢k = Bs −As.

Now, because Z ⊂ Bs −As and because Z is measurable, Z must be null.

(ii) The proof for the second part is almost identical to the proof of (i),
except we are using Lemma 13 instead of Lemma 10.

Let A be an analytic set of a Polish space X, and let f : N → X be the
continuous function such that f(N ) = A. For each s ∈ Seq, let As = f(O(s)).
We have by lemma 7:

A = A{As : s ∈ Seq} = A{As : s ∈ Seq},

and for every s ∈ Seq, As =
⋃∞

n=0 As⌢n.
By Lemma 13, there exists for each s ∈ Seq a Baire set Bs ⊃ As such that

every Baire set Z ⊂ Bs −As is meager. Since As is a closed set, thus Baire, we
can actually find Bs such that As ⊂ Bs ⊂ As.

Let B = B∅. Since B is Baire, to show that A is Baire, it suffices to show
that B −A is meager.

The rest of the proof proceed in exactly the same way as (i), noting that for
each s, Bs −

⋃∞
k=0 Bs⌢k is meager.

10 What Next

The main results of descriptive set theory on Lebesgue measure can be proved
in a more general context, namely for reasonable σ−additive on Polish spaces.
An example of such a measure is a product measure in the Cantor space {0, 1}ω.

Another property of the analytic sets that we haven’t mentioned is connected
to the idea of perfect subsets.

A nonempty closed set is perfect if it has no isolated points. It is a very
interesting set with lots of properties (see Cantor-Bendixson Theorem) [3], and
we could also prove that every uncountable analytic set contains a perfect subset.
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Appendix

Theorem 4. There exists a continuous function f : N → Nω.

Proof. We want a map f : N 7→ Nω. Before we start, let’s examine Nω.
Nω has the product topology. Now, because N is metrixable, Nω is also

mtrizable.
To see this, equipt N with the metrix d1, and when x = ⟨xi⟩, y = ⟨yi⟩, we

define

d2(x, y) = Σi∈N2
−i d1(xi, yi)

1 + d(xi, y1)

This is a metrix on Nω and induced the same topology. Thus to prove f :
N → Nω is continuous, we just have to prove that it is sequentially continuous
with respect to the metric.

Let us present f first, then we prove it’s continuous.
Given a ∈ N , we wish to define its image under the map f . The image of

a needs to be a member of Nω. Let us define a(n), the nth coordinate of the
image of a. a(n) ∈ N , so we need to specify a(n)(k).

Thus to specify a(n) we require a mapping from N ×N to N . For this, there
is a canonical one to one pairing Γ, as |N× N| = |N|. Let a(n)(k) = a(Γ(n, k)).

So a(n) is a reordering of the coordinates of a using Γ.

Now take an
d1−→ a, where an, a ∈ N . We will show that f(an)

d2−→ f(a). To
do that, it is enough to show that the map a 7→ a(n) is continuous.

Remember the way we defined a(n) : a(n)(k) = a(Γ(n, k)), which gives a
permutation of the coordinates of a. If an → a, then an ‘will start to look very
similar to a’. For every N ∈ N, there exists m such that for all k > m, the
first N coordinates of a(k) are the same. Thus we can see that a 7→ a(n) is a
continuous map. As a result, f is continuous.

Corollary 5. There exist a homeomorphism from N to N 2.

Proof. Very similar to the previous theorem, let us define f : N 7→ N 2, where
the first coordinate of f(a) is a(1), second coordinate of f(a) is a(2). Then, take
Γ, the bijection between N2 and N, and let a(n)(k) = a(Γ(n, k)). We have shown
that this map is continuous. Because Γ is a bijection, one can also easily see
that f is a bijection.

Now we just have to show that f is open. For that, consider the inverse
map, (a1, a2) 7→ a. Each element of a is again the reshuffling of the elements in
a1 and a2. Thus by same argument as the previous theorem, we see that it is
continuous. Thus f is a homeomorphism.
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