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Introduction

When we study Zermelo—Fraenkel set theory there are several questions that
naturally arise: we would like to know whether important hypothesis such as
the Axiom of Choice (AC) and the General Continuum Hypothesis (GCH) are
consistent with the ZF axioms.

Godel proved the consistency of GCH and AC using the constructible uni-
verse L. L has very special properties, for example: L is a model of the ZF
axioms; in fact, it is the smallest inner model of ZF, and if we regard L as the
whole universe and took its version of L inside of it, we get L again.

Further, inside L, both AC and GCH are true. This is especially important,
as this means AC and GCH are both consistent with ZF.

Sources

Most of the material here follow closely to Chapter 12 and 13 in Jech’s book
Set Theory. Professor Lowe kindly gave a different way to prove GCH and AC
holds, which is much shorter and very elegant. If there are any mistakes in the
proofs it is entirely my fault.

In this essay we are assuming knowledge of basic set theory, and we will be
working with ZF axioms throughout.

Outline

In this essay, we will start by establishing some preliminaries and proving some
very important background results and introduce constructible sets.

Next, we will check that L is a model of the ZF axioms. Then we will use
Godel Normal Forms to show the axiom of constructibility and that L is the
smallest inner model. Finally, we will show that GCH theorems holds in L, and
as a result AC' also holds.



1 Preliminaries

1.1 Models of Set Theory and Relativization

Before we start laying down the definitions of constructible sets, let us first make
clear the concepts of relativization.

The language of set theory consists of one symbol, €. Let M be a class,
and let ¢(z1,...x,) be a formula in the language of set theory. Then the
relativization, of ¢ in M, written as ¢™ (z1,...x,,), is defined below !:

(xcyM <z cy,
(z=y)M e z=y,
(_‘(rb)]w < _‘¢M7
(0 A VM o oM AP,
3z )M & 3z € M)pM

We can also extend relativization to concepts other than formulae, namely
classes, operations and constants:

If C is a class {z : ¢(z)} then CM is the class {x € M : oM (z)}.

If ¢ is a constant symbol, and ¢ € M, then ¢™ is the corresponding constant
in M. So0M =0if e M, v™ =wifwe M etc.

1.2 Subformulae

Here we define the notion of subformulae, which will be useful later on. Given
a formula ¢, its subformulae are its building blocks. Its proper subformulae are
the subformulae apart from the ¢ itself.

Definition 1.

1. Atomic Formulae don’t have proper subformulae.

2. If o =, (Vx)y or F, the proper subformulae of ¢ are ¢ together with
all proper subformulae of .

3. If ¢ is v = x, the proper subformulae of ¢ are v, x together with all
proper subformulae of ¥ and x.

1.3 Reflection Principle

Theorem 1 (Reflection Principle). Let ¢ be a formula. For each My, there
exists a set M D My such that

M (21, .10) = O(x1,...20)
for all x1,..x, € M. We say that M reflects ¢.

IHere, we are assuming that ¢ is a formula that lives in V. The actual concept of rela-
tivization is much more general. First of all we assume M is a set with binary relation E, we
can get a relativization ¢M:F.




Proof. For atomic formulae z = y and « € y for example, the theorem is
obviously true: we can just take M. This suggests we could try starting from
atomic formulae, and build up to ¢.Indeed, suppose ¢ and 1) are such that the
theorem holds, then the theorem also holds for ¢ A ¥, =g, ¢ V ¢, ¢ < 1» and
¢ = 1 too. However, it is not so obvious that theorem holds for (3z)¢. To
prove that it holds for this formula, we need the next lemma:

Lemma 1. Let ¢(uq,...un, ) be a formula. For each set My, there exists a set
M D My such that
if (3x) ¢(u1,...up,x), then (3z € M) ¢(u1,...un,x) for every uy,..u, € M.

Proof. Let us fix uq,...u, first, and let C' = {x : ¢(u1, ...un, x)}.
Define C = {z € C : (Vz € C) : rank(z) < rank(z)}, i.e. ‘the smallest
elements in C’. This picks out a sample of « that works for this choice of ;.
Next, for every choice of uy, ..., Uy, let H(uq,...un) = C.
Thus H(uq,..uy) is the set with the property

Jrp(uy, ... un, ) = 3z € H(uy, ... upn)) (U1, ...tun, T)

Now we construct the set M by induction. Step by step, we throw in the set
H(uy,...u;,) where u; range over the set we already have.
Explicitly: let M = J;2, M;, where for all i € w,

Mi+1 = Ml U U{H(Ul, un) TUL, e, Uy € Mz}

Now, if uq,...,u, € M, then there exists i € w such that wuy,...,u, € M;;
and if ¢(uy, ...up, ) holds for some z, then it holds for some x € M;; by the
construction of M. Thus M is the set we want. O

Once we have this lemma, we can prove this theorem. Let ¢(x1,...z,) be a
formula. Let us try to simplify ¢ first.

We may assume that the universal quantifier does not occur in ¢, because
we may replace Vr with —dx—.

Next, let ¢1,...¢x be all the subformluae of the formula ¢.

These subformulae are simpler than ¢ in complexity, so we can assume by
induction that these subformulae satisfy the theorem. Next we construct ¢, and
the only problematic case would be showing that the theorem holds for (3z)d¢.

By Lemma 1, there exist M O My such that for j = 1,2, ...k and u... € M,

(Fx);(u,...x) = 3z € M)p;(u...x) (1)
Now we can easily show that M reflects (3x)¢,: Take uy...u,, € M, then

M =3z ¢j(ur, ...um, x) & (Fz € M) ¢§-V[(u1, e, T)
& (Fz e M)pj(u, .. um,x)
< Jz ¢ (w1, ... U, )



We can take away the realization there, because we have restricted u; to M; the
last equivalence is because of (1).

To finish up: M reflects every atomic formulae, and if it reflects ¢ and 1,
then it reflects —¢, (3z)p, p A, p V1, ¢ & ¢ and ¢ = . So we can build ¢
using these simpler components, and M reflects it. O

Remark.

1. Lemma 1 is very important on its own, it gives a ‘representation’ of the
set of x that makes ¢ true.

2. The intuition behind the proof is to take ‘samples’: take one element from
C, throw it in M, and do this for every other choice of uq, ...u,. Be careful
that after each step we have added more elements.

3. The construction of C is known as the ‘Scott’s Trick’, it is used to avoid
the problem of Choice.

Corollary 1. (Variation on Reflection Principle) Let ¢ be a formula. There
are arbitrarily large limit ordinals o such that ¢¥ (x4, ...z,) & ¢Le (21, ...2,) for
all x1,...xy € Lg.

Proof. This is very similar to the proof of the Reflection Principle, we replace
M with L, and perform some modifications. See Appendix, Theorem 8. O

1.4 Collection Principle
Theorem 2 (Collection Principle).

(Vx)(y)(Vu € 2)[(F2)d(u, z,p...) = (3z € y)d(u, z,p...)] (2)

Remark. This theorem is an easy corollary of Lemma 1. It says that given a
collection of classes C,, u € x, then there is a set y such that for every u € z,
if Cy, # 0, then C,, Ny # 0. Le. y ‘samples’ C,,.

Proof. In Lemma 1, take My = x. Then we get y D x such that

(Vx)(Jy) (Yu € »)[(F2)d(u, 2, p...) = (Iz € y)d(u, 2, p...)] (3)
Note that M D =z, which is far bigger than necessary. But that’s not a
problem, we can just restrict it to x to get the result we want. O

1.5 A, formulae

If we are trying to find a model for ZF, a good place to start would be the
transitive classes. For example something like V,,y,: this structure satisfies
every ZF axiom, except for the axiom of replacement.

So let’s focus our attention to a transitive classes M, and ask ourselves: what
sort, of formulae would hold in M? For example, the statement ‘x is an empty
set’: if x is empty then z is also empty in M.



After trying to go from V to M, we can also ask ourselves, what can M tell
us about V? Is there some formula that, if true in M, is true in V7

This leads us to the following family of formulae, Ay, which have the property
that if ¢ is Ag, then ¢ is true in V iff ¢ is true in M.

Definition 2. A formula of set theory is a Ay formula if:

(i) It has no quantifiers.

(ii) It is p AN, NV, =d, ¢ = 1 or ¢ < 1 where ¢, V¥ are Ay formulae.
(ii) It is 3z € y)y, (Vo € y)ip where x € M, and ¢, ¥ are Ay formulae.

Let us see a few examples of Ay formulae: These will give us good intuition
for what things are Ag, and also all of them are useful later. Most of these proof
are simple reformulations.

Lemma 2. The following expressions can be written as Ay formulae, and thus
absolutes for all transitive models:

(i) x ={a,b},z = (a,b),z =0,z Cy

(ii) x is transitive, x is an ordinal, © = w
(i) Z=XxY,Z=X-Y,Z=XnY,Z=JX

(i) Z € dom(X), Z = dom(X), Z € ran(X), Z = ran(X)

(v) If ¢ is Ao, then so are (Vz € dom(X))¢ and (Vz € ran(X))¢p
(vi) X is a relation, f is a function, y = f(x)

Proof.

(4)

r={a,b} & Muez)lu=aVu=">)

z=(a,b) & (Vu € z)(u = {a,b} Vu=a)

r=0< Muez)u#u

rCye VueEz)ucy

(i)

x is transitive & (Vu € z)u C

x is an ordinal < z is transitive A (Vu € 2)(Vv € z)(u € vV v EuVu =)

Muez)Vvex)(Vwez)uevew=u€cw)

So we’re saying (on the first line) x is transitive and the ordering is antisymmet-
ric and (on the second line) the ordering is transitive; this gives the definition
of an ordinal.

(iii)

Z=XxY & MueZ)(Jae X)(TbeY)(u=(a,b))

Z=X-Y&e WVueZ)(uecXANugY)
Z=XNY s MecZ)(ue XANueY)
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Z=UX & VueZ)(Ir e X)(ue )
(iv)
Z e dom(X) & (Jr € X)(Fu € X)(Fv € u)x = (2,v)
Z =dom(X) & (Vz € Z) z € dom(z) A (Vz € dom(z)) z € Z
An assertion similar to the previous argument proves the statement for ran(X).
(v)
(Vz € dom(X))¢p < 3z € X)(Fu € X)(Vz,v € u)(z = (2,v) = )
An assertion similar to the previous argument proves the statement for ran(X).
(vi)
X is a relation & (Vz € X)(Ju € dom(X))(Fv € ranX)x = (u, v)
f is a function < f is a relation
A (Vz € domf)(Vy, z € ran(X))((z,y) € fA(x,2) € f =y =2)

Where (z,y) € f < (Ju € f)u = (z,y), which is Ay, so the whole thing is Ay.

y=f(x)eyC fle)Aflx)Cy
O

Here’s a result that is easy to see, but very useful:
Lemma 3. If ¢ is a formula, M is a transitive set, then ¢™ is a Ay formula.

Proof. This is because all the (Vz) are replaced by (Vz € M), i.e. the quantifiers
are now bounded. (If we want to prove it explicitly, we can use induction on
the complexities of ¢). O

Remark. This only works if M is a set. It wouldn’t work for a transitive class,
which is often the case in this essay.

Lemma 4. If M is a transitive class, and ¢ is a Ag formula, then for all
X1y Ty € M,

oM(z1...xn) © O(x1...0) *)

If (*) hold, we say that the formula ¢ is absolute for the transitive model M.

Proof. The lemma is easily verified for atomic formulae, and for formulae of the
form Y ANy, NV ih, =p, ¢ =Y, ¢ < ).

Now, suppose that ¥ is Ay, let us verify (*) for ¢ = (Ju € x)¥(u, x,...). The
proof for the V case is similar.

= Suppose ¢ holds, then we have (3u € M)(u € xA™). But by inductive
hypothesis, we have ¥ < ), so (Ju € M)(u € x A1), i.e. (Ju € x).

< If (Ju € )4, then © € M and M is transitive means u € M.

YM & o gives Ju(u € M Au € z AypM) and so ((Fu € z)yp)M. O

1.6 Lévy Hierarchy

A natural extension to the Ag formulae is the Lévy Hierarchy. Introduced by
Azriel Lévy, it is useful later when we are trying to examine and classify the
definable formulae.



1.6.1 Definition

Ag formulae are interesting, because all of its quantifiers are bounded. Now we
try to generalise this by adding more quantifiers, either Vz or Jz.

Definition 3 (Lévy Hierarchy). (i) A formula is Xy and Iy if its only quan-
tifiers are bounded: i.e. Ao formulae.

(i) A formula is X411 if it is the form Jx ¢ where ¢ is I1,,.
(iii) A formula is I, 41 if it is the form Vx ¢ where ¢ is X,,.
(iv) A formula is A,, if it is both X, and II,,.
Remark.

1. The first point in definition may seem redundant but will make the nota-
tions cleaner.

2. We allow for dummy variables, so Jzx¢(u), where ¢(u) is Ag, and x does
not appear in ¢(u), would be considered a II; formula.

3. We can generalise this to other concepts by the obvious way:
A property (class, relation) is 3,, (or II,,) if it can be expressed as a X,
(or II,,) formula. A function F is %, (or II,,) if the relation y = F(x) is
3, (or II,).
1.6.2 Properties

Lemma 5. Forn > 1:
(i) If P,Q are ¥, then so are 3xP, PAQ, PV Q,(Ju € z)P, (Vu € z)P;
(ii) If P,Q areIl,, then so are VxP, PANQ, PV Q,(Vu € )P, (Ju € x)P;
(iwi) If P is ¥, then =P is IL,; If P is II,, then —P is &,

Proof. We prove n = 1. Induction will take care of the rest. Indeed, we only
need n = 1 for the purpose of this article.
(i) Suppose

P(z) & 3z ¢(z,x,...)

Qx) & Az Y(z,x,...)
Where ¢, are Ay formulas. We have

JzP(x,...) & dx 32 ¢(z,x, ...)
SPIwevIrcewIzew (v=(x,2)Ad(zz,..))

(4)



Thus it is 31. Further, we have

P(z,..)ANQ(z,...) & Fz3u ¢(z,z,...) Np(u, z, ...)

Pz,..)VQ(x,..) e Iz3u ¢(z,z,...) Vi(u,z,...)

(Fu e x)P(u,...) & FzJuu € z A ¢(z,u,...)

These are A; because of what we just proved about 3z P.

Now, (Vu € )P is a bit more complicated. 3z is in the wrong place, and
we have to be careful: We cannot just move them around at will.

One way we can get around this is to see if we can bound x. If there is a
certain y, such that for all uw € x, 32 € y such that ¢(z,u,...) holds, then we
have the following:

(Vu € z) P(u,...) & (Vu € z) 3z ¢(z,u,...)

& (Fy) Vuex) B3z €y) d(z,u,..) (5)

Which would solve the problem, as the equation is now ;.

But we notice that this is a very familiar problem: given z such that ¢(zx)
holds, find y such that (3= € y) such that ¢(x) holds. Indeed, the Collection
Principle solves this problem perfectly.

Let us remember the content of the Collection Principle:

(Vz)(Fy)(Yu € 2)[(32)¢(u, z,p...) = (Fz € y)d(u, 2, p...)]

Once we have the Collection Principle, we are done, as it gives the last
equivalence in 5. The new sentence on the right hand side of that equivalence
is 21.

(i)
-3z ¢(z,x,...) & Vz ~¢(z, 2, ...)
—Vz ¢(z,z,...) & Iz ~¢(z, 2, ...)
(ii) follows from (i) and (iii). O

Lemma 6. A; properties are absolute for transitive models.

Proof. A properties are absolute for all transitive models.
Y1 properties are downward absolute:
If P(x) = (32)¢(x, 2, ...) where ¢ is Ay, then

PM(z) = (32 € M)¢pM(z,2,...) & (32 € M)p(x, 2,...)
Thus if M is a transitive model, then for all x € M,

PM(z) = P(x)



II; properties are upward absolute:
If P(x) = (V2)¢(z, 2, ...) where ¢ is Ay, then

PM(z) = (Vz € M)¢pM(x,2,...) & (V2 € M)p(x, 2,...)
Thus if M is a transitive model, then for all x € M
P(z) = PM(x)

Thus A; properties are absolute for transitive models. O

1.7 Elementary Submodels

When we are trying to find (or at least bound) the cardinality of something,
one very powerful tool is Mostowski collapse, as it gives us a isomorphism onto
a transitive set, which is hopefully easier to study.

Suppose we have two sets M and N, and we want to know if we can collapse
M down to N. This is probably not possible, but if it were, the sets had better
be ‘similar’ in some sense.

Indeed, Mostowski collapse gives us an isomorphism, so a good thing to guess
is that if M and N satisfy the same formulae, then perhaps M can be collapsed
down to N?

There is a name for such ‘similar’ models:

Definition 4. Let A = (A, P,...F, ...c,...) be a model, where P are the relations,
F are the functions, ¢ are the constants etc.

1. Submodel of A is a subset B C A endowed with the relations P N B™,
FANB", ¢*, where ¢* € B etc.

2. A submodel B C A is an elementary submodel B < A if for every formula
¢, and every aq, ...,a, € B,
B = dlar,...,an) it A Plag, ..., an]
8. Two models A, B are elementarly equivalent if they satisfy the same sen-
tences.
1.7.1 Skolem Functions

How can we construct elementary submodels? The following lemma gives us
some ideas:

Lemma 7. A subset B C A forms an elementary submodel of A iff for every
formula ¢(u, x1,...2,), and every ai,...a, € B:

If 3a € As.t. A= ¢la, a1, ...a,] then Ja € Bs.t. A = ¢la,aq,...a,]  (6)



Proof. Consider the formula ¢ = Ja ¢(a, ay, ...a,).
We have A = 9, thus B |= 1 because B is an elementary submodel, so this
says da € Bs.t. A = ¢la, a1, ...a,]. O

Now we’ll try to construct submodels which are ‘simpler’ or ‘smaller’.

We are reminded of the Downward Lowenheim—Skolem theorem, which says
if we have a theory in a countable language, and the theory has a model, then
it has a countable model. This seems to be along the same lines of what we are
trying to do. Turns out there is a generalisation of this theorem, using Skolem
function, which we will outline now.

Lemma 8 (Generalisation of Lowenheim—Skolem). Suppose we have a model
A in language L, and a set X C A, then there exist an elementary submodel of
A containing X, with cardinality at most | X|-|L] - No.

Remark.

1. Downward Lowenheim—Skolem theorem for countable language £ follows
easily from this lemma.

2. For this proof, we will assume the Axiom of Choice.

Proof. Let us first fix ¢, then we can define, a function h : A™ — A, which takes
ai, ..., an as input, and output b.
This is called a Skolem function for ¢, and it satisfies:

(Ja € A)A E ¢(a,a1,...,a,) implies A ¢d[h(ar,....,an), a1, ..., an]

Using Axiom of Choice, we can construct a function for every ¢.

If a subset B C A is closed under the Skolem functions, for all formulas,
then B satisfies the Equation 6, and hence form an elementary submodel of A.

Given a set of Skolem functions, one for each formula of £, the closure of a
set X C A is a Skolem Hull of X. It is clear that the Skolem hull of X is an
elementary submodel of A and contains X.

Now, let’s look at the cardinality: Given a language £, the formulae of length
n, has cardinality |£|™ = |£]. As all the formulae are of finite length, there are
at most |L|- Ny formulae.

Now, fix a formula ¢: it has a finite number of variables, say it has n
variables, then let us look at the image of X™ under ¢: i.e. look at all possible
outputs of ¢. All of these outputs are going into the convex hull. The cardinality
of the outputs is at most | X |™ = | X|. This holds for every formula, so the convex
hull has cardinality at most | X| - |£]| - No. O

2 Constructible Sets

2.1 Definition

Fix a model (M, €). In this model, we have formulae made of finite list of
symbols, consisting of objects in M and the relationship operator €. Let Form

10



be the list of such formulae in M.

Definition 5 (Definable Sets). We say that a set X is definable if there exist
a formula ¢ € Form and ai...a, € M such that X = {x € M : (M,E) =

o(x,a1,...an)}.
Let def (M) = {X C M : X is definable over (M, E)}

Definition 6. We define by transfinite induction:

(l) LO = @, La+1 = def(La)
(ii) Lx = Uqycy La for a limit ordinal A

(Z”) L= UaEOrd La

L is the class of of constructible sets.

2.2 Properties
Let us develop some intuition for L by proving the following lemmas:
Lemma 9. Va, L, is a transitive set.

Proof. 2 Looking at the definition for constructible sets, we have that M €
def(M), because we can let ¢ be the formula = = z, and Ya € M, a € def(M),
by letting ¢ be x = a. Further, def(M) is a subset of M, thus M C def(M)
C P(M).

In particular, this means that L, is transitive:

Vo, Loy C Lot1 CP(La), so (Vo)(Vy € Loq1)c €y=ax € Loy = € Lyt

And if « is a limit ordinal, it is easy to check that L, is transitive. O

Lemma 10. Let o be an ordinal. Then o C Ly, and LN Ord = «

Proof. 1t is natural to prove this by induction, as we are dealing with ordinals
and an inductive definition.

Because Lo11 C P(Ly), if we can show o € L1, then o C L. ie. we
show that « is a definable subset of L.

a = {x € L, : zis an ordinal }. This is almost good, except ‘x is an ordinal’
is a statement in V. This is a definable set over V', and we want a set which is
definable over L,,.

However, we note that ‘x is an ordinal’ is a Ay formula, so in the transitive
class L, x is an ordinal <= L, |= z is an ordinal.

This solves the problem, because now o = {x € L, : L, = x is an ordinal
},soitisin Laqq. O

2Nothing in this proof is particular to definable sets. In fact, as long as Wy, is a cumulative
hierarchy of sets:

(i) Wo=90

(ii) Wa C Wag1 C P(Wa)

(iil) if o is limit ordinal then Wo = Ug., Wg
Then each W, is transitive, and indeed W, C V.

11



3 L is a model of ZF

Since L is transitive, every Ag formula is absolute for L. This means that
suppose we have aset Y = {x € L, : ¢(z)}, wehave Y = {& € L, : L, = ¢(x)},
i.e. Y is definable over L,. We have seen this argument once already in Lemma
10, and we will use this extensively when checking the formulae of ZF:

Extensionality. L is transitive, thus extensional.

Pair Set. Given a,b € L, let ¢ = {a,b}. We wish to show ¢ € L. Suppose
a,b € Ly, then {a,b} is definable simply by the formula ‘z = {a,b} & u €
xAveExzANVw e x)(w=uVw=v). We note that this is a Ag formula, so
using this formula, Y is definable over L,,.

Union. Given X € L, let Y = |J X, and want to show Y € L. Let a be such
that X € L,, and Y C L,. Y is definable over V by the formula ‘c € Z A Z =
UX’. SinceZ=UX & VzeZ)(FreX)zecaANNVr e X)Vz€x)z€ Z, it
is Ag. Thus Y is defined by a Ay formula, so it is definable over L.

Power set. Given X € L, let Y = P(X) N L. The intuition is that this is
certainly the power set of X restricted to L, but there are two things we have
to be careful about: First of all, Y is a set in V' but not necessarily in L, and
secondly, L could technically have a different structure, and the power set inside
it may not be the intersection. We’ll have to check these points.

Let a be such that Y C L,. Y is definable over L, by formula x C X. Now,
rCX e (VYuex)ue X, whichis Ag,s0Y € L.

Next, we’ll show that Y = PL(X), i.e. ‘Y is power set of X’ holds in L. But
x €Y & x C X is also A, so this means L =z € Y < = C X. This is true
for every € L, so Y = PL(X).

Foundation. If S € L is nonempty, let 2 € S be such that NS = @. Intuitively,
this should be the ‘smallest set’ we’re looking for.

Firstly, z € L as L is transitive.

Now we’ll show that ‘z NS = @” holds in L. Note that ‘aNS=0&Y =
OAY =znS  butweY =2nNS& (VyeY)yexAye S, so this formula is
Ay, so done.

Empty Set. D€ L. Wy e L)y ¢ 0,s0 L= (39)(Vy)(y & S)
ie.: ‘) = 0. Indeed, as L is transitive, we actually have ‘0% = (" too: if S
is empty in L, it is empty in V.

Infinity. w € L, so the intuition is that this is an infinite set. But we’ll have
to show L also sees w as an infinite set.

We wish to show that L =35 (l € SA (Vz € S)zU{z} € 5)

In the above formula, the notions involved are pair set ({z} = {x, z}), empty

12



set and union. But we have already shown that

{a,b}F = {a,b}, UFX=UX, (F=9

Thus w satisfies that formula in L.

Separation. Take a formula ¢, we wish to show that Y = {u € X : ¢Z(u,p)}
isin L.

We notice that Y is a definable set over L, which is almost good. Also, we
know that there is a a such that X,p € L,. At the moment this Y is in L, can
we pass it on to L,?

But this is exactly what the Reflection Principle is for: it gives us a such
that X,p € Ly and Y = {u € X : ¢Fe(u,p)}. Thus Y ={u € Lo : Lo Fu €
X ANp(u,p)}. ThusY € L.

Replacement.

Take a function class F' in L. We remind ourselves that a function class is
made up of ordered pairs, so we wish to show all of those pairs are in L.

VX € L, F(X) is a set in V. However, because F is in L, F(X) C L, and it
is a set so strictly smaller than L, and Ja : F(X) C L.

Now we proof that this is indeed the image of X in L, under F' using Sepa-
ration.

Suppose that p is the formula that defines F, i.e.

(Vo) (Yy)(V2)(p Aplz/yl) =y = 2), (z,y) € F < p(x,y)

Then, separation (in L) gives:

LE@Y) yeYeoyeL,AFr e X)p(x,y))

And y € Lo A (Fz € X)pH(z,y) & y € F(X), so Y = F(X) is the image of
X under F'in L.

4 Godel Normal Form: A Description of def(M)

If we wish to describe a set in def(M), we have to say J¢... but the problem
is, there is no systematic way of listing ¢, thus there is no concrete way of
describing def(M). In this section, we try to make def(M) more tangible.

We have constructed all the Ay formulae inductively, with some basic oper-
ations such as ¢ N1, =¢ etc. Can we describe the construction of a set with
some elementary operations too?

Let us guess some candidates. Some basic set-building operations had better
be there: union, intersection, pair set.

The others are less obvious, but Godel found ten operations (in some books
eight) which completely defines def(M).
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Definition 7. (Gédel Operations)

Gi(X,)Y) ={X,Y},

Go(X,Y) = X x Y,
G3(X,Y)=¢e(X,Y)={(u,v) :ue X AveY Au € v},
Ga(X,Y)=X-Y,

Gs(X,Y)=XNY,

Go(X) =X, (@)
G1(X) = dom(X),

Gs(X) = {(u,v) : (v,u) € X},

Go(X) = {(u,v,w) : (u,w,v) € X},

G1o(X) = {(u,v,w) : (v,w,u) € X}.

Remark. Note that these operations are NOT set theoretic formulae, they are
operations, acting on sets.

Theorem 3 (Godel’s Normal Form Theorem). If ¢(uq,...u,) is a Ag formula,
then there is a composition G of G1,...G1g such that for all X1, ..., X,

G(X1,.0, X)) = {(u1, ey up) tug € X, ..up € X, and ¢(uy, ..., tupn)}. (8)

Proof. There is going to be case work involved: let’s see if we can list out all
the possible forms of ¢ first.

If we have ‘x = y’, we can replace this with ‘(Vu € z)u € y A (Vv € y)v € a’;
x € x can be replaced by (Ju € x)u = z.

Another thing: We do not want quantifiers of the form (3x1 € x2)(3zs € z1).
We do not want to do the induction only to discover later that the there are
additional requirements on x;. Thus, let us rename the bounded variables in
@(uq,...up) such that the variable with the highest index is quantified first.

One last thing: We allow dummy variables, so ¢(z1,...x,) = (21 € x2) and
d(x1,...xn41) = (z1 € x2) are different formulae.

Thus: all Ag formulae can be written in one of the following forms:

(i) The only logical symbols in ¢ are =, A, and restricted 3;

)
(ii) = does not occur;
(i) The only occurrence of € is u; € u;, where i # j;
(iv) ¢ is of the form J(wms1 € u;)(us, ..., Ums1) where i < m.

Now, we prove the theorem case by case. To make reading easier, we will
omit some cases where the proof is repetitive. The full proof can be found in
the Appedix.

14



Case I. $(uq,...uy) is an atomic formula u; € u;(i # j). We prove this case
by induction on n. The cases for n > 2 are similar in spirit, so we will omit it
here and only prove it for n = 2.

Here we have

{(uhuz) cup € Xy Aug € Xo Aug € ’U,Q} = 6(X1,X2)
and

{(ul,u2) Uy € X1 Nus € X2 Nus € Ul} = Gs(E(XQ,Xl)).

Case II. ¢(uq,...,u,) is a negation, ~1p(uq, ...u, ). By the induction hypoth-
esis, there is a GG such that:

{ug, ooyt tug € X1, .oy, € Xy, and ¥(ug, oup)} = G(X1, ... Xp).

The set we want is easily achieved via Gy:

{uy, ooyt 1wy € Xy, .ou, € X, and —0(ug, ..oupn)}
= X1 X ... X Xn — G(Xl, Xn)

Case II1.¢ = 1y1 Apo. This case is very easy to handle, using the induction
hypothesis, and G5 intersection.

Case IV. ¢(uq,...uy) is the formula (Fu,11 € w)(ug, ...upi1).

Let x(uq,...un+1) be the formula ¥(ug,...unt1) A Uny1 € u;. By induction
hypothesis (x is less complex than ¢, because there is one less quantifier), there
is a G such that

{(uy, - tipg1) : w1 € X1, ooy tny1 € Xpy1 and x(uq, ...unt1)}
- G(Xl,...Xn+1)
For all X7,...X,,+1. We claim that

{(uy,...un) : uy €X1,..uy € Xp, and P(uy,...u,)}

= (X; X ... x X)) Ndom(G(X7, ...Xn,UXi)) )

Let us denote v = (u1,...,u,) and X = X1, ...X,,. For all u € X, we have

o(u) & (Fv € u;)(ug,v)
< (v € uy ANp(u,v) Av € UXl)
< u € dom{(u,v) € X x UXi s x(u,v)}

And (9) follows, and this completes the proof. O
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Now we have shown that a set described by A( formula is describable by a
composition of GG;, now we prove kind of the converse of this:

Lemma 11. If G is a Gddel operation, then the property Z = G(X1,...X,) can
be written as a Agy formula.

Remark.

1. This shows that the property Z = G(X4,...X,,) is absolute for the transi-
tive models.

2. This statement is plausible, because this holds for several G;’s, for example
Z ={X,Y}. Refer to Lemma 2 to see these are A formulae.

Proof.
Let us start by checking the lemma for all G;. Lemma 2 takes care of all
except for G3,Gg, Gy, G1p.

Z = Gs(X)
< (Vze Z)(Fx € X)(Fu € ran(X))(Fv € dom(X))(z = (v,u) A z = (u,v))
A (Vo € X)(Vu € ran(X)) (Vv € dom(X)(3z € Z)(z = (v,u) = z = (u,v)))

This is Ag. This looks all very complicated, but it is just a rephrasing of
Z = Gg(X).

We can do a similar rephrasing for G, Gg, G19, the details we will omit here.

The general case is not easy to see. First we notice that

Z=GX,.)eoMecZ)ueGX,. . )ANVue GX,..)ue Z

So we will try to show that v € G(X,...) and (Vu € G(X,...)) u € Z are Ag
functions.

To prove this, we use induction on complexity again because we have already
prove the lemma for G = G;. In fact, we will have to have a induction hypothesis
involving four parts, and prove all parts simultaneously.

Claim.
(i) v e G(X,...)is Ay.
(ii

(iii

If ¢ is Ay, then so are Vu € G(X,...)¢ and Ju € G(X, ...)o.
( ) is Ao.

)
)
) Z
(iv) If ¢ is Ag, then so is ¢(G(X,...)).

Proof. Step 1: Check the claims for all G;. We will not check all four cases
and all 4, the ideas are similar and involves simple reformulations. Much of
the techniques are already displayed in Lemma 2. For example, to show that
u € G1(X,...) is Ag, observe u € {x,y} < uw=2a Vx =y, which is Ay. We will
leave the rest to the reader.
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Step 2: Now, let us build up all the compositions of Gaussian operators by
induction, proving (i) to (iv). We will again show this for some typical examples
and leave the rest to the reader. Remember that the induction hypothesis has
four parts.

(i): We will prove this for two examples, {F, G}, and F' x G.

Suppose x = F(X,...) and z = G(X,...) are A formulae, we have u €
{F(X,..),G(X,..)} & u=FX,.)Vz = G(X,..). From the induction
hypothesis, v = F(X,...) and x = G(X,...) are Ay, thus this is also A,.

Similarly, v € FI(X,...) x G(X,...) can be written as the following;:

Jz e F(X,...) Jy e G(X,...)u=(z,y).

Now, because F, G are less complex than F' X (G, we can assume by induction
hypothesis (ii) that Iy € G(X,...)u = (z,y) is Ay, and as a consequence Jx €
F(X,..)3y € G(X,...)u= (x,y) is also Ay.

(ii): We will prove this for the example of {F,G}. Consider the formula
Yu € {F(X,...),G(X,...)}¢(u). This can be written as

O(F(X,..)) Nd(G(X,...))

Then from induction hypothesis (iv), we are done.

(iii): The proof follows from (i) and (ii), because Z = G(X,...) & (Vu €
2)ueGX,..)AVueGX,..)ueZ

(iv): Let ¢ be a Aq formula, then consider our language and how formulae
are built up, we see that G(X, ...) occurs in ¢(G(X, ...)) in the form v € G(X, ...),
GX,..)eu, Z=G(X,..),Vue G(X,...) or 3u e G(X,...). Since G(X,...) €
u can be replaced with (Jv € u)v = G(X,...), we use (i)-(iii) to show that
?(G(X,...)) is a Ag property. O

Once we have this claim, we can finish the induction. Remember:

Z=GX,.)eMecZueGX,. . )ANVueGX, . )ue Z.
Thus the claim proves that Z = G(X,...) is Ao. O

Once we have these lemmas, we arrive at a very concrete way of describing

def(M):
Lemma 12. For every transitive set M,
def(M) =cl(MU{M})NP(M)

Proof. If ¢ is a formula, then ¢ is a Ay formula. Thus, by the Gédel Normal
Form Theorem, there exist a Godel operation G such that for every transitive
set M and all ay,...a,,

{reM: M ¢z,a,..a,)} = {x e M:oM(x,a1,...an)}
=G(M,ay,...a,)
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Thus the set {x € M : M | ¢[x,ay,...a,]} is in the closure of M U {M}
under G, ...G1p: i.e. take elements of M U{M}, perform operations Gy, ..., G1g
on it and it stays in cl(M U {M}). Note {M} is there, because our operators
can take in M as an argument.

Conversely: If G is a composition of Gy, ...G1¢ then by Lemma 11 we have
Ag formula ¢ such that for all M and all aq,...an, if X € cl(M U{M}), ie.
X =G(M,ay,...ap) for some G, then X = {x: ¢(M, z,a1,...an)}.

This is almost the perfect converse, except here ¢ lives in V', and we are
looking for something defined by ¢ € Form, which lives in M.

In more detail: ¢ is a set theoretic, Ay formula, and all of its quantifiers
are bounded. we want some formula in Form, which lives inside of M, whose
quantifiers are no longer bounded because it only sees the elements in M anyway.

But the situation is easy to fix because X C M, so we can just modify ¢
into something living in Form by replacing each bounded quantifier Ju € M by
Ju. We will refer to this new formula in Form by the name ). Then we have
X={xeM:MEyxa,..y)}

O

5 Axiom of Constructibility

Our goal in this section is to show that L satisfies V = L: i.e. we want to
show that Vz € L, (L = z is constructible). However, by the definition of L,
x € L = (z is constructible (in V)). Thus what we would like to show it 'z is
constructible’ is absolute:

(x is constructible) < (x is constructible) (10)

5.1 Absoluteness of Constructibility

Because L contains all ordinals, if x is constructible, it must be contained in L,,
for some « (but be careful to work in L):

(x is constructible)¥ < Ja € L2 € L (11)

If we can show that € L, < = € LL, somehow, then we’re done. Thus

what we want to show is that the function o — L, is absolute.
But to work with L, transfinite induction is inevitable, and we have no idea
how to work with that yet. Thus we have the following lemma:

Lemma 13. Letn > 1, let G be a X, function (on V), and let F be defined by
induction:
Fla) = G(Fla)

Then F is a 3, function on Ord.

Proof. Let us start by noticing that ‘z is an ordinal’ is a A formula. So it is
enough to verify that the following expression is >,,, because that’s just how F
is defined:
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y = F(a) <= 3f(f is a function A dom(f)
=aN(VE<a)f(§) = G(fle) Ny = G(f)

All properties and operations in this equation is ¥g, and G is X,,.

Now, if ¢(z,p...) is a A formula which does not have u as a variable, then
o(z,p...) & (Fu)p(x,p, ...), hence it can also be considered as a ¥, expression;
Combine this with what we know about P A @), we get y = F(a) is X,. O

(12)

Once we have this, let’s move on to the Lemma we want to prove:
Lemma 14. The function o — Ly, is Ay, which we know is absolute.

Remark. Look at the right hand side in Equation 11:

‘(Ja)(xz € L, ) is different in nature to things we’ve seen like ‘(3z)(x € y)’.
Here, we are saying for the function F' : o — L, (3a)(x € F(«)), and that’s
why here we need to show F' is absolute.

Proof. By Lemma 13, we just need to show that the induction step is Aj.

The induction step consists of taking unions (which is Ag) and Ly41 =
def(Ly) = cl(Lo U{La} NP(Ly)).

First of all, look at the operation Def. We have that

(Vz)(x € Def(A) <= = is definable over A with parameters from A).

On the right hand side, all the parameters are bounded, thus the expression
‘(x € Def(A) < = is definable over A with parameters from A)’ is Ag. Thus
we see that Def(A) is a II; expression.

If we can prove that for any M, Y = cl(M) is X, we are done. But the
expression ‘Y =cl(M)’ is equivalent to the following:

IW[W is a function A dom(W) =w AY = U ran(W) AW (0) = M
A (Yn € dom(W))(W(n+1) = W(n) U{G(z,y) : z,y € W(n),i = 1...10})]
In the previous equation, W is the thing that build the closure inductively:
once we have W(n), W(n+1) is W(n) together with the actions of G;’s on any
pair of x,y.
y = dom(z), y = ran(z), ‘x is a function’; union are all Ay, so all the stuff in

the square bracket is Ag ({G;i(z),y} can be written as two unions over W(n),
s0 Ag). Thus the whole equation is X1, which is what we want. O

Now that we’ve shown this, it is easy to finish up:

Corollary 2. The property ‘x is constructible’ is absolute for inner models of
ZF.

Proof. (x is constructible) < (Ja € M)r € LM & (Ja) z € L, & x is
constructible. 0
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Now we can prove the Axiom of Constructibility:
Theorem 4 (Godel). L satisfies the Aziom of Constructibility

Proof. For every x € L, ‘(x is constructible)”” iff x is constructible, hence ‘every
set is constructible’ holds in L. O

Before leaving this section, let us notice another important corollary that
arises from the proof of 14:

Corollary 3. The operation def is absolute.
Proof. Defis Iy, closure is ¥1. Thus Def(M) = cl(MU{M }) NP (M) is absolute.
O

5.2 Inner Models of ZF

We have shown that L is a model of ZF, and that L lives in the universe V. So
it is natural to think of L as an inner model.

Definition 8. An inner model is a transitive class that contains all ordinals,
and satisfy the axioms of ZF.

Thus L is an inner model. In this section we will now show that it is the
smallest inner model.

Theorem 5. L is the smallest inner model of ZF

Proof. If M is an inner model, then L (the class of all constructible sets in M)
is L. This is because absoluteness of constructibility holds for all inner models.
So L C M. O

6 Consistency of Generalised Continuum Hy-
pothesis

Now we will explore GCH, which will then give us a well ordering of L and the
Axiom of Choice. Much like in the previous section, we will show that for L,
the general continuum hypothesis holds, and this shows that the axioms of ZF
is consistent with GCH, which will be a very significant result.

6.1 Axiom of Choice

We will start off with the following lemma:
Lemma 15. For all @ > w, |Ls| = || in L.

Remark. This result is also true in V/, but it is important to remember to work
in L here.
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Proof. To start, |L,| = w is easy to see: L,, is finite for all natural number n.
L, is a countable unions of countable sets, thus countable.
Now we proceed by transfinite induction. Suppose that |LZ| = |/, then:

LE., = Def®(L,). But Def is absolute, as we have just shown, thus we have

(v € Def(Ly))l &z € LN Def(L,) & 2 € LN Lat1 € 2 € Lot

All elements of L,y is defined by some formula, with finite length, and
constants over L., thus the number of such elements are less than or equal to
w|La| =w - |La| = |Lq|. So this means |LL | = |Lot1| = |af = o+ 1].

And for limit ordinal A, we have |Lx| > || for all « < A, and |Ly| < E,<alal.
So |Ly| = A. O

Corollary 4. L can be well-ordered.

Proof. Each L, bijects with ordinal «, so it is easy to see that L can be well
ordered. O

Theorem 6. Aziom of choice holds in L.
Proof. L can be well ordered, and well ordering is equivalent to Choice. O

Remark. The well ordering can also be constructed explicitly, using Godel op-
erations. The proof is provided in the Appendix, Theorem 10.

6.2 GCH Theorem
Theorem 7. GCH holds for L: if V = L then 2% = R, for every a.

Proof. What we want to show is that |P%(ws)| = Noy1. First, let us prove that

[PH(wa)l < Rasr (13)

To do that, we would like to show that P (w,) C Ly, -

If we can show this, then actually we are done. Because not only have we
shown Equation (13), we have also shown that Pl (w,) € L.

Remember that for a transitive model M, PM(X) = P(X) N M (because
x CY isaAg formula). Thus |PX(ws)| = |P(wa)| > |wa| = Na. Further, this
means [Pl (wy)| = |P(wa)| = 28.

Combine this result with Equation 13, we see that |PL(w,)| = 2% = Ry,
and we are done.

Claim. P¥(ws) C L

Wa+1

Proof. Take x C wo. Suppose we can get 8 < wq41 such that € Lg, then we
are done. We will proceed via Lowenheim-Skolem (Lemma 8), which is great
for reducing collapsing sets down to smaller sets.
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Take a limit ordinal A such that z C w, C Ly. Lowenheim-Skolem (Lemma
8) then gives an elementary submodel M such that w, C M (hence x € M),
M < Ls, and |[M| < R,. 3

Now take the Mostowski collapse of M, to get a transitive set N, such that
M = N C L.

Now consider the formula o, which satisfies

M=o <= M = L) for some limit ordinal A.

We have Ly = o trivially.

= M = o because M < L.

= NkEoas N=M.

= N = L, for some limit ordinal u, because of how o is defined.

|IN| = | M| < R,, but M D w,, so [M|>RX,. Thus |[N| = |M| =8,. N is
transitive, so this means w, C N.

we C M, so due to the uniqueness of the collapsing map in Mostowski
theorem, we get that the collapsing map 7 is the identity on w,. Also remember
that © C wq, so 7(x) = z. But of course, z = n(x) e 7(M) =N = L.

‘N| = |.u| =Ro < Ngy1

Hence z € L,,, where |u| < Rop1, thus P*(w,) C Ly, ,, and we are done. [

O
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7 Appendix

7.1 Variation on the Reflection Principle

Theorem 8. (Variation on Reflection Principle) Let ¢ be a formula. There are
arbitrarily large limit ordinals o such that ¢*(x1,...xv,) & ¢l (21, ...x,) for all
T1,...Tyn € Lg.

Proof of Theorem 8. There are some very obvious choices of ¢, for which this
is trivially true: atomic formulae z = y and = € y are fine, because we can just
take and L, which includes My. Suppose ¢ and 1 such that the theorem holds,
then the theorem obviously holds for ¢ A ¥, =@, ¢ V Y, ¢ < ¥ and ¢ = ¢ too.
This seems to point at using these building blocks to make ¢, and we almost
have all the components, except for (3x)¢, and for that we use Lemma 1.

Once we have this lemma, let us take ¢(z1,...z,) and start to deconstruct
it.

First of all, let us replace all the universal quantifiers (Vz) with —3-.

Next, look at all the subformulae of ¢. Subformulae are defined inductively
by the intuitive way: for example, (Vx)¢ has subformula ¢, and ¢ A ¢ has
subformula ¢ and ¥ etc. We pick out all the smaller components of ¢, right
down to the atomic formulae. Suppose that its subformulae are ¢1, ...¢,.

Now, we can show that each subformulae satisfy theorem and build up to ¢,
and the only problematic case would be the (3z) case. By the lemma that we
have just shown, there exist a such that for j =1,2,...n and u... € L,

(Fz)oj(u,...x) = (Fz € L)@ (u...x) (14)

Now we can easily show that L, reflects (Ex)qu: Take uq...u, € L, then

Ly =3z ¢j(ur, .. upm, x) & (3z € M) gi);»”(ul, )
& (Fz € M)o;(ur,...um, )
& 3z gj(ur, .. Um, )

We can take away the realisation there, because we have restricted u; to M; the
last equivalence is because of (1).

And now we just show that L, is the set that reflects ¢, that we are looking
for. L, reflects every atomic formulae, and if it reflects ¢ and 1, then it reflects
¢, (3x)d, pAY, 9V, ¢ < 1 and ¢ = . So we can build ¢ using these simpler
components, and L, reflects it. O

7.2 Godel Normal Form Theorem

Theorem 9. (Gédel’s Normal Form Theorem,)
If ¢(uy,...up) is a Ag formula, then there is a composition G of G1,...G1o
such that for all X4, ..., X,,
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G(X1,.., Xn) ={(u1, .oy up) 1 ur € X1, ..oty € Xy and d(uq, ..., upn) . (15)

Proof. If we have ‘¢ = y’, we can replace this with ‘(Vu € z)u € y A (for allv €
y)v € z’; & € x can be replaced by (Ju € x)u = =.

Also, let us rename the bounded variables in ¢(uq, ...u,) such that the vari-
able with the highest index is quantified first.

Thus: all Ag formulae can be written in one of the following forms

4:
(i) The only logical symbols in ¢ are =, A, and restricted 3;
(ii) = does not occur;

(i) The only occurrence of € is u; € u;, where i # j;

(iv) ¢ is of the form J(wms1 € us)(us, ..., Ums1) where i < m.

Now, we prove the theorem case by case.

Case I. ¢(uq,...u,) is an atomic formula u; € u;(i # j). We prove this case
by induction on n.

Case Ia. n = 2. Here we have

{(’U,l,UQ) cup € X1 Aug € Xog Aug € Ug} = 6(X1,X2)

and

{(ul,u2) tur € X1 ANug € Xo Aug € ul} = Gg(é(Xz,Xﬂ).

(These motivates the inclusion of € and Gg in the operations)
Now, we can use induction on n:
Case Ib. n > 2,4, j # n. By the inductive hypothesis, there is a G such that

{ul, U1t UL € Xyl € X1 Ay € Uj} = G(Xl, -~-7Xn—1)-
Then:
{ul, U1, Up UL € X1, ..Uy € Xy Au; € Uj} = G(Xl, ---aXn—l) X Xp,.

Case Ic. n > 2,4,5 # n — 1. The idea is very similar to the previous case,
except we have to perform a swap.
Use the Case Ib to get G such that:

{(u1, . Up—2,Un, Up—1) w1 € X1, ..up € X, and u; € uj} = G(Xq,...., X)

But
(Ug,otiyy) = ((U1y oo Upp—2)y Upyy Up—1)

4We allow dummy variables, so ¢(z1,...25) = (x1 € x2) and ¢(x1,...xnt1) = (1 € T2)
are different formulae.
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We get
{ul, ey U U € X7, Uy € Xy Aug € u]'} = Gg(G(Xl, ---;Xn—l))-

Case Id. i =n — 1,5 =n. By Case Ia, we have
{(un—hun) : (un—l S Xn—l N un € Xn ANUp—1 € un)} = E(Xn—lan)

So
{(tn-1,un), (U1, - Up_2) :u1 € X1,...tup € Xpy ANp_1 € up)}
= E(Xn—lan) X (X1 X ...Xn_g) = G(Xl, Xn)

Note that
((un—la Un), (Ul, -~-un—2) - (un—la Up,, (uh ---un—Q))

and
(ul, un) = ((ul, ...un_g),un_l,un)

So we swap using G1o:
{(U1, ’U,n) tuy € Xq,.oup € Xpp Ay € ’UJn)} = Glo(G(Xl, ,Xn))
Case Ie. i =n,j =n — 1: similar to the previous case.
Case II. ¢(uy,...,u,) is a negation, ~p(uq, ...u, ). By the induction hypoth-
esis, there is a G such that:

{u1, oy tty 1 ug € Xy, oty € X, and Y(uq, ...up)} = G(X1, .. X,).

The set we want is easily achieved via Gy:

JUp Uy € X9, u, € X, and —)(ug, .up)}

{Ul,...
= X1 X ... X Xn — G(Xl, Xn)

Case II1.¢ =11 Np. This case is very easy to handle, using the induction

hypothesis, and G5 intersection.
Case IV. ¢(uy,...u,) is the formula (Jupi1 € w;)(ug, ...tipni1).

Let x(uq,...un+1) be the formula ¥(uy, ...unt1) A Uny1 € u;. By induction
hypothesis (x is less complex than ¢, because there is one less quantifier), there

is a G such that

{(uy, . tups1) s u1 € X1,y tny1 € Xpy1 and x(uq, ... upt1)}
- G(Xl,...X7l+1)

For all X1,...X,,+1. We claim that

{(u1,...up) s ug €X1,..uy € X,, and ¢(u, ...un)}
(16)
= (X1 % ... X X)) Ndom(G(X1, .. X, | X3))
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Let us denote u = (uq,...,u,) and X = X;,...X,,. For all u € X, we have

P(u) < (v € ug)Y(ui, v)
< (v € uy ANp(u,v) Av € UXZ)
< u € dom{(u,v) € X x UXi s x(u,v)}

And (16) follows, and this completes the proof. O

7.3 An Explicit Well Ordering of L
Theorem 10 (Godel). There exists a well-ordering of L.

Proof. L = U,corq La, it is a nested hierarchy, so it is natural to try to order
each L, first, then make the orderings compatible.

So we want to construct, inductively, a well ordering <, for each L., and
we do it in a way such that if « < 3, then <g is an end-extension of <,, i.e.:

(i) if x <oy, then x <g y
(ii) If x € Ly, y € Lg — Ly, then x <g y

So: if a < 8, then everything in L, are ‘smaller’.

Also: if x € y € L, then: due o transitivity, 35 < « such that = € Lg, thus
T <q Y-

Now, the rest is just making our intuition concrete. For uninterrupted read-
ing feel free to skip the rest of the proof.

Step 1: Limit ordinal

Suppose the A is a limit ordinal, and for all @ < A we have <, that satisfies
our conditions, then simply let <,= |J

Step 2: Define <41

We recall the definition of L,41, based on Godel operation:

a<y’

Lot1 =def(Ly) = P(La) Ncl(Ly U{Ly})

We can further break down the definition for cl(M) by looking at the con-
struction of cl(M) step by step. We define W2 as follows:

(i) Wyt = Lo U {La}
(ii) W“Jrl = {Gi(X7Y) XY eWri=1, ...10}

n

Then we note that Lay1 = P(La) N U, g W2
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—— Why do we do this?

the closure of L, U{L,} imposes structure on L,: when looking at closure, we
are constructing sets step by step using G;, giving rise to a natural order.

Following this intuition, let us order L,:

First we take elements of L, then L, itself, then the remaining elements of
W, then the remaining elements of W3* etc.

Now let us order the elements in W, ;. We notice that very important fact
that every x € W, ; is equal to G;(u, v) for some u,v and i = 1,...,10. This is
again great, because Gs are numbered, giving another natural order.

But when even that fails, we compare the least u’s such that © = G;(u,v).
When that fails again, we compare the last v such that © = G;(u,v). At this
point, this must work, and this gives the desired ordering.

Here comes the tedious definition, which described the intuition above:

(i) <2, is the well-ordering of Lo, U{L,} that extends <, and such that L,
is the last element.

ii) <2, is the following well-ordering of W<, ;:
a+1 n+1
x <I] y iff either:

e v <3,y OR:
e xc W and y & W2 OR:
o x ¢ WY and y ¢ W AND:
(a) the least ¢ such that Ju,v € W(z = G;(u,v)) <
the least j such that 3s,t € W (y = Gi(s,t)) OR:
(b) the least ¢ = the least j and
[the <, -least u € W such that Jv € W (x =
[the <7, -least s € W such that 3t € W (y = G;
(c) the least ¢ = least j and the least u = least s and
[the <2 -least v € W2 such that x = G;(u,v)] <2,
[the <7, -least t € W such that x = G;(u, )]

Gi(u,v))] <
(s,t))], OR:

Now we are tempted to take |J, <@,;, but in that case, what we have is a
ordering of | J;7, W. We want an ordering of Lo11 = P(La) N Upo W2

Also remember, that < is essentially a set of ordered pairs, comparing each
subset of L.

Thus we will define the following to get an ordering of L,41:

<a+1= U <a+41 N(P(La) x P(La))

n=0
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It is clear that <,41 is an end-extension of <, and is a well-ordering of

Loyq.
Now having defined <, for all o, we let x <y y < da = <, y. This relation
< is a well-ordering of L. O

28



