Mcintyre's Theorem

Tianyiwa Xie

1 Unfinished from Last Time

Lemma 1.1.

- 1. G has a unique generic type iff G is connected.
- 2. $deg_M(G) = [G:G^0]$

Proof. The first part we have proven the last time. Now we prove the second part.

Remember $\deg_M(\phi) = |\{p \in S_n(G) : MR(p) = MR(\phi) \land \phi \in p\}|$ [1, Lemma 6.2.16].

So since G^0 has a unique maximal rank, $\deg_M(G^0) = 1$. But because G is a union of $[G : G^0]$ disjoint translates of G^0 , $\deg_M(G) = [G : G^0]$.

Lemma 1.2. If $g \in G$, there are $a, b \in \mathbb{G}$ generic over G such that g = ab.

Proof. Let $a \in \mathbb{G}$ be generic over G. Because $x \mapsto x^{-1}g$ is a definable bijection, $b = a^{-1}g$ is also generic over G and g = ab.

Remark. Not only can we always find elements a, b, any generic element will give one such pair.

Definition 1. We say that a definable $A \subseteq G$ is generic if MR(A) = MR(G).

Let me mention a perhaps obvious fact:

Fact 1. If G is connected and $A \subset G$ is a generic set defined by $\phi(v)$, and p is the unique type with maximal rank, then $\phi \in p$.

Proof. Suppose not, then $\neg \phi \in p$ and $MR(\neg \phi) = MR(G)$. But $\neg \phi(G) = A^c$, so $MR(A^c) = MR(A) = MR(G)$, meaning the Morley degree of $G \geq 2$. Contradiction since connectedness means $\deg_M(G) = 1$.

Lemma 1.3. Suppose that G is connected and $A \subseteq G$ is a definable generic subset. Then $G = A \cdot A = \{ab : a, b \in A\}$.

Proof. Let ϕ be a formula defining A. From the previous lemma, we know that for all $g \in G$, can find $a, b \in \mathbb{G}$ generic such that g = ab.

But because there is only one unique generic type p and $MR(\phi) = MR(G)$, $\phi \in p = tp(a/G) = tp(b/G)$. So $\mathbb{G} \models \phi(a) \land \phi(b)$.

So $\mathbb{G} \models \exists x \exists y (\phi(x) \land \phi(y) \land xy = g)$. Because $G \prec \mathbb{G}$, there are $a', b' \in A$ such that g = a'b'. \square

We will now show that finitely many translates of a generic set cover the group. But to do that we need a result on Stone spaces and a results on unique nonforking extensions:

Definition 2 (Stone Topology). For ϕ a \mathcal{L}_A formula with free variables from $v_1, ..., v_n$, let $[\phi] = \{p \in S_n^{\mathcal{M}}(A) : \phi \in p\}$.

Let \mathcal{M} be a \mathcal{L} -structure and $A \subset \mathcal{M}$. The Stone topology on $S_n^{\mathcal{M}}(A)$ is the topology generated by taking the sets $[\phi]$ as open sets. In fact these sets are also closed.

Fact 2. $S_n^M(A)$ is compact.

Lemma 1.4.

- 1. Suppose that $p \in S_n(A)$ and $A \subset B$, and $deg_M(p) = 1$. Then p has a unique nonforking extension in $S_n(B)$ [1, Theorem 6.3.2(iii)].
- 2. Further, this nonforking extension is given by $p_B = \{\Phi(\overline{x}, \overline{b}) : \mathbb{M} \models d_p \Phi(\overline{b}), \overline{b} \in B\}$, where $d_p \Phi(\overline{y})$ is the formula defining whether $\Phi(\overline{x}, \overline{y}) \in p$ [1, Proposition 6.3.7].

Lemma 1.5. Let $A \subset G$ be a definable generic subset of G, then there are $a_1, a_2, \ldots, a_n \in G$ such that $G = a_1 A \cup a_2 A \cup \cdots \cup a_n A$.

Proof. Because finitely many translates of G^0 cover G, we may, without loss of generality, assume that G is connected. Then we know that G has a unique type with maximal MR, and also $\deg_M(G) = 1$.

Let $\phi(x)$ be the \mathcal{L}_G -formula defining A. Let $p \in S_1(G)$ be the unique generic type. From Fact 1, $\phi \in p$.

Claim 1. For any $q \in S_1(G)$, there is $g \in G$ such that $\phi(gv) \in q$.

Remark. The idea behind this claim is to get a correspondence between elements in G and the types in $S_1(G)$. Then we will make use of the compactness of the Stone space to finish the proof.

Proof. By the definability of types, for all \mathcal{L}_G formula $\Phi(x, \overline{y})$, there is a \mathcal{L}_G formula $d_q\Phi(\overline{y})$ such that $\Phi(x, \overline{a}) \in q \iff \mathbb{G} \models d_q\Phi(\overline{a})$.

Let a, b be independent realizations of p, q. This means that $q = \operatorname{tp}(b/G)$ and $\operatorname{tp}(b/G \cup \{a\})$ is nonforking. In particular, since $\deg_M(G) = 1$, this nonforking extension is unique, and $\operatorname{tp}(b/G \cup \{a\}) = \{\Phi(x, a) : \mathbb{G} \models d_q \Phi(a)\}$ [1, Theorem 6.3.8].

Because a is generic, ab is generic, so $\operatorname{tp}(ab/G)$ is generic and $\phi \in \operatorname{tp}(ab/G)$. Therefore $\mathbb{G} \models \phi(ab)$.

Let $\psi(v, w)$ be the formula $\phi(w \cdot v)$ and $d_q \psi$ be such that $\psi(v, g) \in q$ iff $\mathbb{G} \models d_q \psi(g)$.

Because $\mathbb{G} \models \phi(ab) = \psi(b, a), \ \psi(b, a) \in \operatorname{tp}(b/G \cup \{a\})$ and equivalently $\mathbb{G} \models d_q \psi(a)$.

Thus $\mathbb{G} \models \exists w d_q \psi(w)$. Because $G \prec \mathbb{G}$, there exists $g \in G$ such that $\phi(gv) \in q$.

For each $g \in G$, we let $O_g = \{q \in S_1(G) : \phi(gv) \in q\}$. This is an open subset of $S_1(G)$ and by the claim, $S_1(G) = \bigcup_{g \in G} O_g$.

By compactness of Stone spaces, we get $a_1, ..., a_n \in G$ such that $S_1(G) = O_{a_1} \cup ... \cup O_{a_n}$.

In particular, if $g \in G$, and q' is the unique type containing the formula v = g, there is an i such that $q \in O_{a_i}$. But then $\phi(a_i g)$ and $g \in a_i^{-1} A$.

Thus $G = a_1^{-1} A \cup ... \cup a_n^{-1} A$.

2 Preliminaries from Model Theory

In this section, G means a ω -stable subgroup and \mathbb{G} is a monster model such that $G \prec \mathbb{G}$; \mathcal{M} means a ω -stable model, with monster model \mathbb{M} and $M \prec \mathbb{M}$.

Lemma 2.1. Suppose G is a ω -stable group and $H \leq G$ is a definable subgroup, then for any coset aH, MR(aH) = MR(H).

Lemma 2.2. Suppose G is an ω -stable group and $\sigma: G \to G$ is a definable group automorphism. Then σ fixes G^0 set wise.

Proof. Take $\sigma(G^0) \cap G^0$. This is a definable finite index subgroup of G. But G^0 is the smallest, so $G^0 \subset \sigma(G^0)$.

However, $[G:\sigma(G^0)]=[G:G^0]$. This is because σ is a bijection. So $G^0=\sigma(G^0)$.

Lemma 2.3. Suppose \mathcal{M} is ω -stable, and $X \subseteq \mathbb{M}^n, Y \subseteq \mathbb{M}^n$ are definable, and $f: X \to Y$ is a definable finite-to-one function from X to Y. Then MR(X) = MR(Y).

This final Lemma was mentioned in Lecture number 7. Alternatively, see [1, Theorem 6.2.18].

3 Preliminaries from Galois Theory

The proof of Mcintyre's theorem relies on results from Galois theory, which we will state here:

Lemma 3.1. Suppose L/K is a Galois extension with degree n, and q is a prime dividing n, then there exists a field $K \subseteq F \subset L$ such that L/F is Galois of degree q.

Additionally the Galois group L/F is cyclic.

Proof. This is a result of the fundamental theorem of Galois theory and Cauchy theorem. \Box

Lemma 3.2. Every finite extension of a perfect field is separable. Thus the algebraic closure of a perfect field is normal by definition and separable, so it is Galois.

Theorem 3.1.

- (a) Suppose that L/K is a cyclic Galois extension of degree n, where n is coprime to char(K) and K contains all nth roots of unity. Then minimal polynomial L/K is $X^n a$ for some $a \in K$.
- (b) Suppose that K has characteristic p > 0 and L/K is a Galois extension of degree p. Then the minimal polynomial of L/K is $X^p X a$ for some $a \in K$.

4 ω -stable Fields

In this section, we assume that $(K, +, \cdot, ...)$ is a ω -stable, infinite field. We will prove a series of results about ω -stable fields, culminating in Mcintyre's Theorem.

Lemma 4.1. *K* is connected.

Proof. Suppose that K^0 is a connected component of the additive group. For $a \in K \setminus \{0\}$, $x \mapsto ax$ is a definable group automorphism.

Therefore, by Lemma 2.2, K^0 is closed under this map. Therefore K^0 is an ideal of K. But K is a field which does not have any proper ideals, so $K^0 = K$.

Corollary 4.1.1. The multiplicative group $(K^{\times}, \cdot, \dots)$ is connected.

Proof. By Lemma 1.1, K^{\times} has a unique generic type iff K^{\times} is connected.

Lemma 4.1 shows K has a unique maximal type and Morley degree 1. Now suppose that K^{\times} have two different complete types p and q with maximal rank, then there exists a formula $\phi \in p$ and $\neg \phi \in q$. But then ϕ and $\neg \phi$ both have maximal rank, giving Morley degree of $K \geq 2$, contradiction.

Now, we prove a lemma that follows easily from Lemma 2.3.

Lemma 4.2. Suppose (G, \cdot, \dots) is a ω -stable group which is connected, and suppose $f: G \to G$ is a definable, finite to one group homomorphism. Then f(G) = G.

Proof. $f(G) \leq G$ is a definable subgroup, so if f(G) is also a finite index subgroup, we are done due to connectedness of G. But unfortunately we do not know this (e.g. consider $(\mathbb{Q}^{\times})^m$ as a subgroup of \mathbb{Q}^{\times}). But by Lemma 2.3, MR(f(G)) = MR(G). Therefore [G: f(G)] must be finite and f(G) = G.

Corollary 4.2.1. For every natural number n, $K^n = K$, i.e. every element in K has an nth root. In particular, K is perfect.

Proof. $x \mapsto x^n$ is a multiplicative homomorphism, which is finite to one, so by Lemma 4.2, $(K^{\times})^n = (K^{\times})$, and $K^n = K$.

Corollary 4.2.2. Suppose that K has characteristic p > 0, then the map $x \mapsto x^p - x$ is surjective.

Proof. $f: G \to G$ given by $f(x) = x^p - x$ is an finite to one, additive homomorphism. So by Lemma 4.2, f(G) = G and f is surjective.

Lemma 4.3. Suppose that L/K is a finite extension, then L is also ω -stable.

Proof. L is a finite vector space over K, say with dimension n and basis $\{e_1, \ldots, e_n\}$. So we can then interpret L in K:

Define addition as $(a_i)_{1 \le i \le n} + (b_i)_{1 \le i \le n} = (a_i + b_i)_{i \le n}$, and multiplication according to the behavior of the coefficients in L. These are definable operations.

More specifically, we can define addition and multiplication on K^n such that the map $f: L \to K^n$, where $\sum_{i=1}^n a_i e_i \mapsto (a_1, \dots, a_n)$ preserves addition and multiplication.

Therefore L is interpretable in K. Now if we take any $A \subseteq K^n$ with $|A| = \omega$, all types in $S_m^{(K^n)}(A)$ correspond to a type in K over a countable set. Therefore $|S_m^{(K^n)}(A)| = \omega$, and L is ω -stable.

Theorem 4.1 (Mcintyre). $(K, +, \cdot, ...)$ is algebraically closed.

Proof. Lemma 4.1 and Corollary 4.1.1 tells us that K and K^{\times} are connected. Corollary 4.2.1 tells us K is perfect.

It is enough to show that K has no proper Galois extensions: we have mentioned that every finite extension of this field is Galois, so if there are no proper Galois extensions, we must have $\overline{K} = K$.

Claim 2. Suppose that K is an infinite ω -stable field, containing all mth roots of unity for all $m \leq n$. Then K has no proper Galois extensions of degree n. *Proof.* Let n be the least such that there is a ω -stable field containing all mth roots of unity for $m \leq n$ and K has a proper Galois extension L of degree n.

Let q be a prime number dividing n. By Galois theory, there is a $K \subseteq F \subset L$ such that L/F is Galois of degree q.

The field F is a finite algebraic extension of K, so it is also ω -stable by Lemma 4.3. Thus, by the minimality of n, F = K, and n = q, and consequently L/K is cyclic.

Now we split into two cases.

Case 1: char(K) = 0 or $char(K) = p \neq q$.

By Theorem 3.1(a), the minimal polynomial of L/K is $X^q - a$ for some $a \in K$. But every element in K has a qth root, so $X^q - a$ is reducible, a contradiction.

Case 2: K has characteristic p=q. Then by Theorem 3.1(b), the minimal polynomial of L/K is X^p-X-a for some $a\in K$. But from Corollary 4.2.2, we know that this map is surjective, so reducible, contradiction.

Claim 3. If K is an infinite ω -stable field, then K contains all roots of unity.

Proof. Let n be the least such that K does not contain all nth roots of unity. Let ξ be a primitive root of unity.

Then $K(\xi)$ is a Galois extension of K of degree at most n-1. This contradicts Claim 1.

So K contains all roots of unity, and Claim 1 proves that K has no proper Galois extensions. Thus we are done.

5 ω -stable Groups

We have shown in this section that ω stability in infinite fields imply algebraically closure. The converse is not true.

For an infinite group with no proper definable infinite subgroups, ω -stable implies G is Abelian. This result implies that if G is an infinite ω -stable group, then there is an infinite definable Abelian $H \leq G$.

References

[1] D. Marker. Model theory: An introduction. 217, 01 2002.