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1 Unfinished from Last Time

Lemma 1.1.

1. G has a unique generic type iff G is connected.

2. degM (G) = [G : G0]

Proof. The first part we have proven the last time. Now we prove the second part.
Remember degM (ϕ) = |{p ∈ Sn(G) : MR(p) = MR(ϕ) ∧ ϕ ∈ p}| [1, Lemma 6.2.16].
So since G0 has a unique maximal rank, degM (G0) = 1. But because G is a union of [G : G0] disjoint

translates of G0, degM (G) = [G : G0].

Lemma 1.2. If g ∈ G, there are a, b ∈ G generic over G such that g = ab.

Proof. Let a ∈ G be generic over G. Because x 7→ x−1g is a definable bijection, b = a−1g is also generic
over G and g = ab.

Remark. Not only can we always find elements a, b, any generic element will give one such pair.

Definition 1. We say that a definable A ⊆ G is generic if MR(A) = MR(G).

Let me mention a perhaps obvious fact:

Fact 1. If G is connected and A ⊂ G is a generic set defined by ϕ(v), and p is the unique type with
maximal rank, then ϕ ∈ p.

Proof. Suppose not, then ¬ϕ ∈ p and MR(¬ϕ) = MR(G). But ¬ϕ(G) = Ac, so MR(Ac) = MR(A) =
MR(G), meaning the Morley degree of G ≥ 2. Contradiction since connectedness means degM (G) =
1.

Lemma 1.3. Suppose that G is connected and A ⊆ G is a definable generic subset. Then G = A · A =
{ab : a, b ∈ A}.

Proof. Let ϕ be a formula defining A. From the previous lemma, we know that for all g ∈ G, can find
a, b ∈ G generic such that g = ab.

But because there is only one unique generic type p and MR(ϕ) = MR(G), ϕ ∈ p = tp(a/G) =
tp(b/G). So G |= ϕ(a) ∧ ϕ(b).

So G |= ∃x∃ y(ϕ(x) ∧ ϕ(y) ∧ xy = g). Because G ≺ G, there are a′, b′ ∈ A such that g = a′b′.

We will now show that finitely many translates of a generic set cover the group. But to do that we
need a result on Stone spaces and a results on unique nonforking extensions:

Definition 2 (Stone Topology). For ϕ a LA formula with free variables from v1, ..., vn, let [ϕ] = {p ∈
SM
n (A) : ϕ ∈ p}.
Let M be a L-structure and A ⊂ M . The Stone topology on SM

n (A) is the topology generated by
taking the sets [ϕ] as open sets. In fact these sets are also closed.

Fact 2. SM
n (A) is compact.

Lemma 1.4.

1. Suppose that p ∈ Sn(A) and A ⊂ B, and degM (p) = 1. Then p has a unique nonforking extension
in Sn(B) [1, Theorem 6.3.2(iii)].

2. Further, this nonforking extension is given by pB = {Φ(x, b) : M |= dpΦ(b), b ∈ B}, where dpΦ(y)
is the formula defining whether Φ(x, y) ∈ p [1, Proposition 6.3.7].
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Lemma 1.5. Let A ⊂ G be a definable generic subset of G, then there are a1, a2, . . . , an ∈ G such that
G = a1A ∪ a2A ∪ · · · ∪ anA.

Proof. Because finitely many translates of G0 cover G, we may, without loss of generality, assume that
G is connected. Then we know that G has a unique type with maximal MR, and also degM (G) = 1.

Let ϕ(x) be the LG-formula defining A. Let p ∈ S1(G) be the unique generic type. From Fact 1,
ϕ ∈ p.

Claim 1. For any q ∈ S1(G), there is g ∈ G such that ϕ(gv) ∈ q.

Remark. The idea behind this claim is to get a correspondence between elements in G and the types in
S1(G). Then we will make use of the compactness of the Stone space to finish the proof.

Proof. By the definability of types, for all LG formula Φ(x, y), there is a LG formula dqΦ(y) such that
Φ(x, a) ∈ q ⇐⇒ G |= dqΦ(a).

Let a, b be independent realizations of p, q. This means that q = tp(b/G) and tp(b/G ∪ {a}) is
nonforking. In particular, since degM (G) = 1, this nonforking extension is unique, and tp(b/G ∪ {a}) =
{Φ(x, a) : G |= dqΦ(a)} [1, Theorem 6.3.8].

Because a is generic, ab is generic, so tp(ab/G) is generic and ϕ ∈ tp(ab/G). Therefore G |= ϕ(ab).
Let ψ(v, w) be the formula ϕ(w · v) and dqψ be such that ψ(v, g) ∈ q iff G |= dqψ(g).
Because G |= ϕ(ab) = ψ(b, a), ψ(b, a) ∈ tp(b/G ∪ {a}) and equivalently G |= dqψ(a).
Thus G |= ∃wdqψ(w). Because G ≺ G, there exists g ∈ G such that ϕ(gv) ∈ q.

For each g ∈ G, we let Og = {q ∈ S1(G) : ϕ(gv) ∈ q}. This is an open subset of S1(G) and by the
claim, S1(G) = ∪g∈GOg.

By compactness of Stone spaces, we get a1, ..., an ∈ G such that S1(G) = Oa1 ∪ ... ∪Oan .
In particular, if g ∈ G, and q′ is the unique type containing the formula v = g, there is an i such that

q ∈ Oai
. But then ϕ(aig) and g ∈ a−1

i A.
Thus G = a−1

1 A ∪ ... ∪ a−1
n A.

2 Preliminaries from Model Theory

In this section, G means a ω-stable subgroup and G is a monster model such that G ≺ G; M means a
ω-stable model, with monster model M and M ≺ M.

Lemma 2.1. Suppose G is a ω-stable group and H ≤ G is a definable subgroup, then for any coset aH,
MR(aH) = MR(H).

Lemma 2.2. Suppose G is an ω-stable group and σ : G → G is a definable group automorphism. Then
σ fixes G0 set wise.

Proof. Take σ(G0) ∩ G0. This is a definable finite index subgroup of G. But G0 is the smallest, so
G0 ⊂ σ(G0).

However, [G : σ(G0)] = [G : G0]. This is because σ is a bijection. So G0 = σ(G0).

Lemma 2.3. Suppose M is ω-stable, and X ⊆ Mn, Y ⊆ Mn are definable, and f : X → Y is a definable
finite-to-one function from X to Y . Then MR(X) = MR(Y ).

This final Lemma was mentioned in Lecture number 7. Alternatively, see [1, Theorem 6.2.18].

3 Preliminaries from Galois Theory

The proof of Mcintyre’s theorem relies on results from Galois theory, which we will state here:

Lemma 3.1. Suppose L/K is a Galois extension with degree n, and q is a prime dividing n, then there
exists a field K ⊆ F ⊂ L such that L/F is Galois of degree q.

Additionally the Galois group L/F is cyclic.

Proof. This is a result of the fundamental theorem of Galois theory and Cauchy theorem.

Lemma 3.2. Every finite extension of a perfect field is separable. Thus the algebraic closure of a perfect
field is normal by definition and separable, so it is Galois.

Theorem 3.1.

2



(a) Suppose that L/K is a cyclic Galois extension of degree n, where n is coprime to char(K) and K
contains all nth roots of unity. Then minimal polynomial L/K is Xn − a for some a ∈ K.

(b) Suppose that K has characteristic p > 0 and L/K is a Galois extension of degree p. Then the minimal
polynomial of L/K is Xp −X − a for some a ∈ K.

4 ω-stable Fields

In this section, we assume that (K,+, ·, . . . ) is a ω-stable, infinite field. We will prove a series of results
about ω-stable fields, culminating in Mcintyre’s Theorem.

Lemma 4.1. K is connected.

Proof. Suppose that K0 is a connected component of the additive group. For a ∈ K \ {0}, x 7→ ax is a
definable group automorphism.

Therefore, by Lemma 2.2, K0 is closed under this map. Therefore K0 is an ideal of K. But K is a
field which does not have any proper ideals, so K0 = K.

Corollary 4.1.1. The multiplicative group (K×, ·, . . . ) is connected.

Proof. By Lemma 1.1, K× has a unique generic type iff K× is connected.
Lemma 4.1 shows K has a unique maximal type and Morley degree 1. Now suppose that K× have

two different complete types p and q with maximal rank, then there exists a formula ϕ ∈ p and ¬ϕ ∈ q.
But then ϕ and ¬ϕ both have maximal rank, giving Morley degree of K ≥ 2, contradiction.

Now, we prove a lemma that follows easily from Lemma 2.3.

Lemma 4.2. Suppose (G, ·, . . . ) is a ω-stable group which is connected, and suppose f : G → G is a
definable, finite to one group homomorphism. Then f(G) = G.

Proof. f(G) ≤ G is a definable subgroup, so if f(G) is also a finite index subgroup, we are done due to
connectedness of G. But unfortunately we do not know this (e.g. consider (Q×)m as a subgroup of Q×).

But by Lemma 2.3, MR(f(G)) = MR(G). Therefore [G : f(G)] must be finite and f(G) = G.

Corollary 4.2.1. For every natural number n, Kn = K, i.e. every element in K has an nth root. In
particular, K is perfect.

Proof. x 7→ xn is a multiplicative homomorphism, which is finite to one, so by Lemma 4.2, (K×)n = (K×),
and Kn = K.

Corollary 4.2.2. Suppose that K has characteristic p > 0, then the map x 7→ xp − x is surjective.

Proof. f : G→ G given by f(x) = xp − x is an finite to one, additive homomorphism. So by Lemma 4.2,
f(G) = G and f is surjective.

Lemma 4.3. Suppose that L/K is a finite extension, then L is also ω-stable.

Proof. L is a finite vector space over K, say with dimension n and basis {e1, . . . , en}. So we can then
interpret L in K:

Define addition as (ai)1≤i≤n + (bi)1≤i≤n = (ai + bi)i≤n, and multiplication according to the behavior
of the coefficients in L. These are definable operations.

More specifically, we can define addition and multiplication on Kn such that the map f : L → Kn,
where

∑n
i=1 aiei 7→ (a1, . . . , an) preserves addition and multiplication.

Therefore L is interpretable in K. Now if we take any A ⊆ Kn with |A| = ω, all types in S
(Kn)
m (A)

correspond to a type in K over a countable set. Therefore |S(Kn)
m (A)| = ω, and L is ω-stable.

Theorem 4.1 (Mcintyre). (K,+, ·, . . . ) is algebraically closed.

Proof. Lemma 4.1 and Corollary 4.1.1 tells us that K and K× are connected. Corollary 4.2.1 tells us K
is perfect.

It is enough to show that K has no proper Galois extensions: we have mentioned that every finite
extension of this field is Galois, so if there are no proper Galois extensions, we must have K = K.

Claim 2. Suppose that K is an infinite ω-stable field, containing all mth roots of unity for all m ≤ n.
Then K has no proper Galois extensions of degree n.
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Proof. Let n be the least such that there is a ω-stable field containing all mth roots of unity for m ≤ n
and K has a proper Galois extension L of degree n.

Let q be a prime number dividing n. By Galois theory, there is a K ⊆ F ⊂ L such that L/F is Galois
of degree q.

The field F is a finite algebraic extension of K, so it is also ω-stable by Lemma 4.3. Thus, by the
minimality of n, F = K, and n = q, and consequently L/K is cyclic.

Now we split into two cases.
Case 1: char(K) = 0 or char(K)= p ̸= q.
By Theorem 3.1(a), the minimal polynomial of L/K is Xq − a for some a ∈ K. But every element in

K has a qth root, so Xq − a is reducible, a contradiction.
Case 2: K has characteristic p = q. Then by Theorem 3.1(b), the minimal polynomial of L/K is

Xp −X − a for some a ∈ K. But from Corollary 4.2.2, we know that this map is surjective, so reducible,
contradiction.

Claim 3. If K is an infinite ω-stable field, then K contains all roots of unity.

Proof. Let n be the least such that K does not contain all nth roots of unity. Let ξ be a primitive root
of unity.

Then K(ξ) is a Galois extension of K of degree at most n− 1. This contradicts Claim 1.

So K contains all roots of unity, and Claim 1 proves that K has no proper Galois extensions. Thus
we are done.

5 ω-stable Groups

We have shown in this section that ω stability in infinite fields imply algebraically closure. The converse
is not true.

For an infinite group with no proper definable infinite subgroups, ω-stable implies G is Abelian. This
result implies that if G is an infinite ω-stable group, then there is an infinite definable Abelian H ≤ G.
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