Mcintyre’s Theorem

Tianyiwa Xie

1 Unfinished from Last Time

Lemma 1.1.

1. G has a unique generic type iff G is connected.
2. degyr(G) =[G : G

Proof. The first part we have proven the last time. Now we prove the second part.
Remember degy,(¢) = |{p € Sn(G) : MR(p) =MR(¢) A ¢ € p}| [1, Lemma 6.2.16].

So since G has a unique maximal rank, degy;(GY) = 1. But because G is a union of [G : G°] disjoint
translates of G°, degy/(G) = [G : GY]. O

Lemma 1.2. If g € G, there are a,b € G generic over G such that g = ab.

Proof. Let a € G be generic over G. Because x — 2~ 'g is a definable bijection, b = a~'g is also generic
over G and g = ab. O

Remark. Not only can we always find elements a, b, any generic element will give one such pair.
Definition 1. We say that a definable A C G is generic if MR(A4) = MR(G).
Let me mention a perhaps obvious fact:

Fact 1. If G is connected and A C G is a generic set defined by ¢(v), and p is the unique type with
mazimal rank, then ¢ € p.

Proof. Suppose not, then —¢ € p and MR(—¢) = MR(G). But =¢(G) = A°, so MR(A®) = MR(4) =
MR(G), meaning the Morley degree of G > 2. Contradiction since connectedness means degys (G)
1.

o

Lemma 1.3. Suppose that G is connected and A C G is a definable generic subset. Then G = A- A =
{ab:a,b e A}.

Proof. Let ¢ be a formula defining A. From the previous lemma, we know that for all g € G, can find
a,b € G generic such that g = ab.

But because there is only one unique generic type p and MR(¢) = MR(G), ¢ € p = tp(a/G) =
tp(b/G). So G k= ¢(a) A ¢(b).

So G E JxTy(¢(z) A d(y) A zy = g). Because G < G, there are a’,b’ € A such that g = a'b’. O

We will now show that finitely many translates of a generic set cover the group. But to do that we
need a result on Stone spaces and a results on unique nonforking extensions:

Definition 2 (Stone Topology). For ¢ a L4 formula with free variables from vy, ..., v,, let [¢] = {p €
Sy (A): ¢ € p.

Let M be a L-structure and A C M. The Stone topology on S/*'(A) is the topology generated by
taking the sets [¢] as open sets. In fact these sets are also closed.

Fact 2. SM(A) is compact.

Lemma 1.4.

1. Suppose that p € S,,(A) and A C B, and degpr(p) = 1. Then p has a unique nonforking extension
in Sy (B) [1, Theorem 6.3.2(%ii)].

2. Further, this nonforking extension is given by pp = {®(Z,b) : M = d,®(b),b € B}, where d,®(¥)
is the formula defining whether ®(Z,y) € p [1, Proposition 6.3.7].



Lemma 1.5. Let A C G be a definable generic subset of G, then there are ay,as,...,a, € G such that
G=a1AUasAU---Ua,A.

Proof. Because finitely many translates of G° cover G, we may, without loss of generality, assume that

G is connected. Then we know that G has a unique type with maximal MR, and also deg,,(G) = 1.
Let ¢(z) be the Lg-formula defining A. Let p € S1(G) be the unique generic type. From Fact 1,

¢ Ep.

Claim 1. For any q € S1(G), there is g € G such that ¢(gv) € q.

Remark. The idea behind this claim is to get a correspondence between elements in G and the types in
S1(G). Then we will make use of the compactness of the Stone space to finish the proof.

Proof. By the definability of types, for all L formula ®(z,7), there is a L5 formula d,®(y) such that
®(z,a) € ¢ <= G [ d,P(a).

Let a,b be independent realizations of p,q. This means that ¢ = tp(b/G) and tp(b/G U {a}) is
nonforking. In particular, since degys(G) = 1, this nonforking extension is unique, and tp(b/G U {a}) =
{®(x,a) : G d;®(a)} [1, Theorem 6.3.8].

Because a is generic, ab is generic, so tp(ab/G) is generic and ¢ € tp(ab/G). Therefore G = ¢(ab).

Let 9(v, w) be the formula ¢(w - v) and dgt be such that (v, g) € ¢ iff G = dy9(g).

Because G = ¢(ab) = ¢(b,a), ¥(b,a) € tp(b/G U {a}) and equivalently G |= d ¢ (a).

Thus G |= Jwdy(w). Because G < G, there exists g € G such that ¢(gv) € g. O

For each g € G, we let O, = {q € S1(G) : ¢(gv) € ¢}. This is an open subset of S1(G) and by the
claim, S1(G) = UgeaOy.

By compactness of Stone spaces, we get aq, ..., a, € G such that S1(G) = Oy, U...UO,, .

In particular, if g € G, and ¢’ is the unique type containing the formula v = g, there is an ¢ such that
q € O,,. But then ¢(a;g) and g € a; *A.

Thus G =a;'AU...Ua; A O

2 Preliminaries from Model Theory

In this section, G means a w-stable subgroup and G is a monster model such that G < G; M means a
w-stable model, with monster model M and M < M.

Lemma 2.1. Suppose G is a w-stable group and H < G is a definable subgroup, then for any coset aH ,
MR(aH) = MR(H).

Lemma 2.2. Suppose G is an w-stable group and o : G — G is a definable group automorphism. Then
o fizes GO set wise.

Proof. Take o(G°) N G°. This is a definable finite index subgroup of G. But G° is the smallest, so
GY C o(GY).
However, [G : 0(GY)] = [G : G°]. This is because ¢ is a bijection. So G° = o(GP). O

Lemma 2.3. Suppose M is w-stable, and X C M"™ Y C M"™ are definable, and f : X — Y is a definable
finite-to-one function from X toY. Then MR(X) = MR(Y).

This final Lemma was mentioned in Lecture number 7. Alternatively, see [1, Theorem 6.2.18].

3 Preliminaries from (Galois Theory

The proof of Mcintyre’s theorem relies on results from Galois theory, which we will state here:

Lemma 3.1. Suppose L/K is a Galois extension with degree n, and q is a prime diwviding n, then there
exists a field K C F C L such that L/F is Galois of degree q.
Additionally the Galois group L/F is cyclic.

Proof. This is a result of the fundamental theorem of Galois theory and Cauchy theorem. O

Lemma 3.2. Fvery finite extension of a perfect field is separable. Thus the algebraic closure of a perfect
field is normal by definition and separable, so it is Galois.

Theorem 3.1.



(a) Suppose that L/K is a cyclic Galois extension of degree n, where n is coprime to char(K) and K
contains all nth roots of unity. Then minimal polynomial L/K is X™ — a for some a € K.

(b) Suppose that K has characteristic p > 0 and L/ K is a Galois extension of degree p. Then the minimal
polynomial of L/K is XP — X — a for some a € K.

4 w-stable Fields

In this section, we assume that (K, +,-,...) is a w-stable, infinite field. We will prove a series of results
about w-stable fields, culminating in Mcintyre’s Theorem.

Lemma 4.1. K is connected.

Proof. Suppose that K is a connected component of the additive group. For a € K \ {0}, = — az is a
definable group automorphism.

Therefore, by Lemma 2.2, K is closed under this map. Therefore K is an ideal of K. But K is a
field which does not have any proper ideals, so K9 = K. O

Corollary 4.1.1. The multiplicative group (K*,-,...) is connected.

Proof. By Lemma 1.1, K* has a unique generic type iff K* is connected.

Lemma 4.1 shows K has a unique maximal type and Morley degree 1. Now suppose that K* have
two different complete types p and ¢ with maximal rank, then there exists a formula ¢ € p and —¢ € q.
But then ¢ and —¢ both have maximal rank, giving Morley degree of K > 2, contradiction. O

Now, we prove a lemma that follows easily from Lemma 2.3.

Lemma 4.2. Suppose (G,-,...) is a w-stable group which is connected, and suppose f : G — G is a
definable, finite to one group homomorphism. Then f(G) = G.

Proof. f(G) < G is a definable subgroup, so if f(G) is also a finite index subgroup, we are done due to
connectedness of G. But unfortunately we do not know this (e.g. consider (Q*)™ as a subgroup of Q*).
But by Lemma 2.3, MR(f(G)) = MR(G). Therefore [G : f(G)] must be finite and f(G) = G. O

Corollary 4.2.1. For every natural number n, K™ = K, i.e. every element in K has an nth root. In
particular, K is perfect.

Proof. x — x™ is a multiplicative homomorphism, which is finite to one, so by Lemma 4.2, (K*)" = (K*),
and K" = K. O

Corollary 4.2.2. Suppose that K has characteristic p > 0, then the map x +— xP — x is surjective.

Proof. f:G — G given by f(x) = 2P — z is an finite to one, additive homomorphism. So by Lemma 4.2,
f(G) = G and f is surjective. O

Lemma 4.3. Suppose that L/K is a finite extension, then L is also w-stable.

Proof. L is a finite vector space over K, say with dimension n and basis {e1,...,e,}. So we can then
interpret L in K:

Define addition as (a;)1<i<n + (bi)1<i<n = (@i + b;)i<n, and multiplication according to the behavior
of the coefficients in L. These are definable operations.

More specifically, we can define addition and multiplication on K™ such that the map f : L — K™,

where 2?21 a;e; — (a1,...,a,) preserves addition and multiplication.
Therefore L is interpretable in K. Now if we take any A C K™ with |A|] = w, all types in Sk )(A)
correspond to a type in K over a countable set. Therefore |S§,¢K ')(A)\ = w, and L is w-stable. O

Theorem 4.1 (Mcintyre). (K,+,,...) is algebraically closed.

Proof. Lemma 4.1 and Corollary 4.1.1 tells us that K and K* are connected. Corollary 4.2.1 tells us K
is perfect.

It is enough to show that K has no proper Galois extensions: we have mentioned that every finite
extension of this field is Galois, so if there are no proper Galois extensions, we must have K = K.

Claim 2. Suppose that K is an infinite w-stable field, containing all mth roots of unity for all m < n.
Then K has no proper Galois extensions of degree n.



Proof. Let n be the least such that there is a w-stable field containing all mth roots of unity for m <n
and K has a proper Galois extension L of degree n.

Let ¢ be a prime number dividing n. By Galois theory, there is a K C F' C L such that L/F is Galois
of degree q.

The field F' is a finite algebraic extension of K, so it is also w-stable by Lemma 4.3. Thus, by the
minimality of n, F' = K, and n = ¢, and consequently L/K is cyclic.

Now we split into two cases.

Case 1: char(K) =0 or char(K)=p # q.

By Theorem 3.1(a), the minimal polynomial of L/K is X? — a for some a € K. But every element in
K has a gth root, so X? — a is reducible, a contradiction.

Case 2: K has characteristic p = ¢. Then by Theorem 3.1(b), the minimal polynomial of L/K is
XP — X — a for some a € K. But from Corollary 4.2.2, we know that this map is surjective, so reducible,
contradiction. O

Claim 3. If K is an infinite w-stable field, then K contains all roots of unity.

Proof. Let n be the least such that K does not contain all nth roots of unity. Let £ be a primitive root
of unity.
Then K (&) is a Galois extension of K of degree at most n — 1. This contradicts Claim 1. O

So K contains all roots of unity, and Claim 1 proves that K has no proper Galois extensions. Thus
we are done. O
5 w-stable Groups

We have shown in this section that w stability in infinite fields imply algebraically closure. The converse
is not true.

For an infinite group with no proper definable infinite subgroups, w-stable implies G is Abelian. This
result implies that if G is an infinite w-stable group, then there is an infinite definable Abelian H < G.
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