
Prisoner’s Dilemma

1 Introduction

Let’s imagine for a second that you and a stranger are being interrogated by the police. A heinous crime
has been committed, and the police has irrefutable proof that at least one of you was the perpetrator.

Here’s the deal (regardless of whether or not you actually did it):

1. If you both cooperate with the police and admit the crime, you both get 1 year in prison.

2. If one of you cooperates and admits the crime, and the other defects and claims innocence, then
the corporator gets 10 years in jail, while the other walks free.

3. If both of you defects, and refuse to admit the crime, both of you gets 6 years in jail.

You
Stranger

Cooperate Defect

Cooperate
You: -1 years,
Them: -1 years

You: -10 years,
Them: 0 years

Defect
You: 0 years,

Them: -10 years
You: -6 years,
Them: -6 years

Table 1: Prisoner’s Lemma Payoffs

What will you do in this situation? Would you change your answer if the stranger is changed to your
best friend? Your enemy? A close family member?

How would your answer change if the penalties change to larger numbers? For example, what if
instead of a -6 years penalty for both defecting, you get life sentences instead?

This classic mind experiment is called a Prisoner’s Dilemma. Though theoretical in construct, it is
relevant in a lot of real life scenarios.

The most chilling example is perhaps nuclear arm race. In a situation where two countries posses
nuclear weapons, but don’t know the other country’s intentions, A prisoner’s dilemma is formed. The
best outcome, of course, is if neither of the countries fires. But what if your neighbor is greedy and is
going to fire?

2 The Rational Solution

There is a rational solution to the prisoner’s dilemma, which I found quite depressing.
Let’s go back to the original problem given in Table 1. Suppose that you are the prisoner, let’s split

this problem into two cases based on whether your opponent defects or not.

• Suppose your opponent defects, what should you do? Based on the table, it is better for you if you
defect as well.

• Suppose your opponent defects, what should you do? You also gain the maximum benefit by
defecting.

So the stunning conclusion is that you should always defect, no matter what. But this is also sad and
unsatisfying, because we would never get the net best outcome for both people, which happens when we
both cooperate.

We should cooperate only when we are sure that the other person would coorperate back. But how
can we know this?

1



3 The Dilemma Repeated

In one variation of the game, the prisoner is given the dilemma over and over again. In this scenario, we
can gauge how trustworthy the person is based on their past behavior.

For example, you could start by cooperating, and only cooperate in the next round if your opponent
cooperated back in the previous round. If your opponent defected, then you never cooperate with them
again.

Or, say if you have inside information about how likely your opponent is cooperate, then based on
exact punishments, you could choose to cooperate with a certain probability. Since the game is played
many times, the occasional bad luck won’t matter.

I won’t get into more details here since this excellent TEDed video explains everything very well with
wonderful felt stop motion.

4 Robots Face the Dilemma

In real life, we don’t have the luxury of replaying each decision infinitely many times to see what the
outcomes could be. How then, can we model the prisoners and the decisions?

We can do this by replacing the prisoners with robots, i.e. computer programs, and let them face off
against each other.

We said that we can only rationally cooperate if we know the opponent will cooperate back. This
happens, for instance, if your opponent is someone who places your well-being above their own, like your
parents. They will cooperate no matter what you might do, so you can safely cooperate back.

We can model this behaviour with CooperateBot. CooperateBot always cooperate, no matter what
happens.

1 input: Code of Opponent

2

3 output: Cooperate

Listing 1: CooperateBot

We can then design a robot which cooperates with CooperateBot only. We can call this CoopWith-
CoopBot (I know this is a stupid name, if you have a better suggestion I’m listening):

1 input: Code of Opponent

2

3 if Opponent = CooperateBot:

4 Cooperate

5 else:

6 Defect

Listing 2: CoopWithCoopBot

We are assuming here that all of the computer programs are completely transparent, so one robot can
see the inner working of any another robot, and the code of one robot can be the input of another robot,
which is what we have done here.

What happens if you pitch CooperateBot against CooperateBot? With CoopWithCoopBot? What
about pitching CoopWithCoopBot against CoopWithCoopBot?

The answer to the last question is they both defect. So we might improve upon CoopWithCoopBot,
by introducing a MirrorBot:

1 input: Code of Opponent

2

3 if Opponent = MirrorBot:

4 Cooperate

5 else:

6 Defect

Listing 3: MirrorBot

What does this robot do? It looks at the opponent, and if the opponent is exactly the same as itself,
i.e. a MirrorBot, then it cooperates. Otherwise it defects.

If we pitch MirrorBot against MirrorBot, both cooperate. But this system is fragile. Even if the
Robot bahaves exactly MirrorBot, but the “spelling is different”, meaning the code deviates by even one
letter, then this system fails.

We go back to the parents example. Your opponent doesn’t have to be CooperateBot for you to
cooperate with them, you only need to know that they will Cooperate with you. So how about the
following SmartBot:

2

https://www.youtube.com/watch?v=emyi4z-O0ls


1 input: Code of Opponent

2

3 if Opponent(SmartBot) = Cooperate:

4 Cooperate

5 else:

6 Defect

Listing 4: SmartBot

SmartBot works like this: it works out how the opponent will react when pitched against SmartBot.
That is: SmartBot takes the opponent code, and inputs itself into the code of the opponent. Then
SmartBot observes the results. If the Opponent cooperates with SmartBot, then SmartBot cooperates
back. Otherwise, SmartBot defects.

What happens if SmartBot is pitched against SmartBot?
I gave the ideas only, the actual implementation is a bit more tricky. For starters, to design MirrorBot

and SmartBot, we need a program that knows its own source code.
This is possible but tricky: try it yourself! Try to design a robot that when it runs, outputs its own

source code. Can you see an issue with this?

5 Origin Story

The idea behind the talk and the dilemma facing robots comes from Mihaly Barasz and his 2021 paper
[BCF+21].

In 2019, I was 17 and was lucky to attend a summer camp called European Summer Program of
Rationality (ESPR). The camp was fantastic and Mihaly was an instructor there. He gave a class on the
prisoners dilemma, and it left an impression on me. So all credit of this talk goes to him.

References

[BCF+21] Mihaly Barasz, Paul Christiano, Benja Fallenstein, Marcello Herreshoff, Patrick LaVictoire,
and Eliezer Yudkowsky. Robust cooperation in the prisoner’s dilemma: Program equilibrium
via provability logic, 2021.

3


	Introduction
	The Rational Solution
	The Dilemma Repeated
	Robots Face the Dilemma
	Origin Story

